論文の概要: Learned, uncertainty-driven adaptive acquisition for photon-efficient scanning microscopy
- arxiv url: http://arxiv.org/abs/2310.16102v2
- Date: Mon, 24 Mar 2025 15:48:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 16:32:15.963993
- Title: Learned, uncertainty-driven adaptive acquisition for photon-efficient scanning microscopy
- Title(参考訳): 光子効率走査顕微鏡の学習・不確実性による適応的取得
- Authors: Cassandra Tong Ye, Jiashu Han, Kunzan Liu, Anastasios Angelopoulos, Linda Griffith, Kristina Monakhova, Sixian You,
- Abstract要約: 走査型顕微鏡システムにおいて,画素単位の不確実性を同時に認識し,予測する手法を提案する。
実験的な共焦点・多光子顕微鏡システムにおいて,不確実性マップが深層学習予測における幻覚を識別できることを実証した。
- 参考スコア(独自算出の注目度): 12.356716251834566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scanning microscopy systems, such as confocal and multiphoton microscopy, are powerful imaging tools for probing deep into biological tissue. However, scanning systems have an inherent trade-off between acquisition time, field of view, phototoxicity, and image quality, often resulting in noisy measurements when fast, large field of view, and/or gentle imaging is needed. Deep learning could be used to denoise noisy microscopy measurements, but these algorithms can be prone to hallucination, which can be disastrous for medical and scientific applications. We propose a method to simultaneously denoise and predict pixel-wise uncertainty for scanning microscopy systems, improving algorithm trustworthiness and providing statistical guarantees for deep learning predictions. Furthermore, we propose to leverage this learned, pixel-wise uncertainty to drive an adaptive acquisition technique that rescans only the most uncertain regions of a sample, saving time and reducing the total light dose to the sample. We demonstrate our method on experimental confocal and multiphoton microscopy systems, showing that our uncertainty maps can pinpoint hallucinations in the deep learned predictions. Finally, with our adaptive acquisition technique, we demonstrate up to 16X reduction in acquisition time and total light dose while successfully recovering fine features in the sample and reducing hallucinations. We are the first to demonstrate distribution-free uncertainty quantification for a denoising task with real experimental data and the first to propose adaptive acquisition based on reconstruction uncertainty.
- Abstract(参考訳): 共焦点顕微鏡や多光子顕微鏡のような走査型顕微鏡システムは、生体組織に深く入り込む強力なイメージングツールである。
しかし、走査システムは、取得時間、視野、光毒性、画像品質と固有のトレードオフを持ち、しばしば、高速で広い視野、または穏やかな画像を必要とするときにノイズ測定を行う。
ディープ・ラーニングはノイズの多い顕微鏡計測に応用できるが、これらのアルゴリズムは幻覚を起こす傾向があり、医学や科学の分野では破滅的な結果をもたらす可能性がある。
本稿では,顕微鏡システムにおける画素単位の不確実性を同時に認識・予測し,アルゴリズムの信頼性を向上し,深層学習予測のための統計的保証を提供する手法を提案する。
さらに、この学習された画素単位の不確実性を利用して、試料の最も不確実な領域のみをスキャンし、時間を節約し、試料への全光線量を削減する適応的取得手法を提案する。
実験的な共焦点・多光子顕微鏡システムにおいて,不確実性マップが深層学習予測における幻覚を識別できることを実証した。
最後に, 適応的獲得手法により, 試料中の微細な特徴を回復し, 幻覚を低減しつつ, 取得時間と全光線量を最大16倍に削減できることを示した。
我々は,実実験データを用いた復調作業における分布自由不確実性定量化を初めて実施し,再構成不確実性に基づく適応的獲得を提案する。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Image Denoising and the Generative Accumulation of Photons [63.14988413396991]
我々は,次の光子がどこに到着できるかを予測するために訓練されたネットワークが,実際に最小平均二乗誤差(MMSE)を解くことを示している。
自己監督型認知のための新しい戦略を提案する。
本稿では,画像に少量の光子を反復的にサンプリングし,付加することにより,可能な解の後方からサンプリングする新しい方法を提案する。
論文 参考訳(メタデータ) (2023-07-13T08:03:32Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychographyは、ナノメートルスケールでサンプルの非侵襲的なイメージングを可能にする、よく確立されたコヒーレント回折イメージング技術である。
Ptychographyの最大の制限は、サンプルの機械的スキャンによる長いデータ取得時間である。
本稿では,深部画像先行と深部画像先行とを組み合わせた生成モデルを提案する。
論文 参考訳(メタデータ) (2022-05-05T02:18:26Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
真値を含むことが保証される各画素の周囲の不確実な間隔を導出する方法を示す。
画像から画像への回帰を3つのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-10T18:59:56Z) - De-Noising of Photoacoustic Microscopy Images by Deep Learning [0.9786690381850356]
光音響顕微鏡(PAM)画像は、レーザー強度の最大許容露光、組織内の超音波の減衰、トランスデューサ固有のノイズによってノイズに悩まされる。
そこで本研究では,PAM画像から複雑なノイズを取り除くための深層学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-01-12T05:13:57Z) - Low dosage 3D volume fluorescence microscopy imaging using compressive
sensing [0.0]
本稿では, 圧縮センシングによる3Dボリュームの完全再構成を, 励起量の半分未満のSNRで行う方法を提案する。
ゼブラフィッシュ胚脊髄のRFP標識ニューロンの3次元体積を, 共焦点顕微鏡を用いて0.1umの軸方向サンプリングにより計測し, 本手法の実証を行った。
この研究で開発されたCSベースの手法は、2光子や光シート顕微鏡などの他の深部イメージングに容易に適用でき、サンプル光毒性の低減は重要な課題である。
論文 参考訳(メタデータ) (2022-01-03T18:44:50Z) - Deep Learning Approach for Hyperspectral Image Demosaicking, Spectral
Correction and High-resolution RGB Reconstruction [3.0478210530038443]
教師付き学習手法を用いたハイパースペクトル画像のスナップショット化のための深層学習に基づく画像復号アルゴリズムを提案する。
医用画像が公開されていないため,既存の医用画像データセットからのスナップショット画像をシミュレートする合成画像生成手法が提案されている。
得られたデシック画像は定量的かつ質的に評価され、画像品質の明確な改善が示される。
論文 参考訳(メタデータ) (2021-09-03T09:50:03Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Deep learning-based super-resolution fluorescence microscopy on small
datasets [20.349746411933495]
ディープラーニングは、技術的障壁を減らし、回折制限画像から超解像を得る可能性を示している。
本稿では,小型データセットと超解像画像の訓練を成功させた畳み込みニューラルネットワークに基づく新しいアプローチを示す。
このモデルは、大規模なトレーニングデータセットの取得が困難なMRIやX線イメージングなどの他のバイオメディカルイメージングモードに適用することができます。
論文 参考訳(メタデータ) (2021-03-07T03:17:47Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Distributed optimization for nonrigid nano-tomography [0.40631409309544836]
本研究では,ナノスケールの試料の投影アライメント,アンワーピング,正規化を併用した共同解析器を提案する。
投影データの一貫性は、ファーンバックのアルゴリズムによって推定される密度の高い光流によって制御され、より少ないアーティファクトで鋭いサンプル再構成をもたらす。
論文 参考訳(メタデータ) (2020-07-11T19:22:43Z) - Photoacoustic Microscopy with Sparse Data Enabled by Convolutional
Neural Networks for Fast Imaging [0.9786690381850356]
光音響顕微鏡(PAM)は近年,バイオメディカルイメージング技術として期待されている。
サンプリング密度の低減は、画像品質の犠牲となる画像取得時間を自然に短縮することができる。
本稿では,畳み込みニューラルネットワーク(CNN)を用いたスパースPAM画像の品質向上手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T05:49:32Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。