Complex Image Generation SwinTransformer Network for Audio Denoising
- URL: http://arxiv.org/abs/2310.16109v1
- Date: Tue, 24 Oct 2023 18:21:03 GMT
- Title: Complex Image Generation SwinTransformer Network for Audio Denoising
- Authors: Youshan Zhang and Jialu Li
- Abstract summary: This paper converts the audio denoising problem into an image generation task.
We first develop a complex image generation SwinTransformer network to capture more information from the complex Fourier domain.
We then impose structure similarity and detailed loss functions to generate high-quality images and develop an SDR loss to minimize the difference between denoised and clean audios.
- Score: 20.11487887319951
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Achieving high-performance audio denoising is still a challenging task in
real-world applications. Existing time-frequency methods often ignore the
quality of generated frequency domain images. This paper converts the audio
denoising problem into an image generation task. We first develop a complex
image generation SwinTransformer network to capture more information from the
complex Fourier domain. We then impose structure similarity and detailed loss
functions to generate high-quality images and develop an SDR loss to minimize
the difference between denoised and clean audios. Extensive experiments on two
benchmark datasets demonstrate that our proposed model is better than
state-of-the-art methods.
Related papers
- A cross Transformer for image denoising [83.68175077524111]
We propose a cross Transformer denoising CNN (CTNet) with a serial block (SB), a parallel block (PB), and a residual block (RB)
CTNet is superior to some popular denoising methods in terms of real and synthetic image denoising.
arXiv Detail & Related papers (2023-10-16T13:53:19Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - Hierarchical Disentangled Representation for Invertible Image Denoising
and Beyond [14.432771193620702]
Inspired by a latent observation that noise tends to appear in the high-frequency part of the image, we propose a fully invertible denoising method.
We decompose the noisy image into clean low-frequency and hybrid high-frequency parts with an invertible transformation.
In this way, denoising is made tractable by inversely merging noiseless low and high-frequency parts.
arXiv Detail & Related papers (2023-01-31T01:24:34Z) - Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image
Denoising [0.0]
We introduce a hybrid RQUNet-VAE scheme for image and time series decomposition used to reduce noise in satellite imagery.
We also apply our scheme to several applications for multi-band satellite images, including: image denoising, image and time-series decomposition by diffusion and image segmentation.
arXiv Detail & Related papers (2022-08-25T19:51:07Z) - Dense residual Transformer for image denoising [7.232516946005627]
Image denoising is an important low-level computer vision task, which aims to reconstruct a noise-free and high-quality image from a noisy image.
We propose an image denoising network structure based on Transformer, which is named DenSformer.
arXiv Detail & Related papers (2022-05-14T01:59:38Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
We propose a novel network architecture denoted as IGNet, in order to refine the frequency bands from low to high in a progressive manner.
With this design, more inter-frequency prior and information are utilized, thus the model size can be lightened while still perserves competitive results.
arXiv Detail & Related papers (2021-12-22T10:35:53Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
We introduce the idea of a cGAN which explicitly leverages structure in the image noise space.
By learning directly a low dimensional manifold of the image noise, the generator promotes the removal from the noisy image only that information which spans this manifold.
Based on our experiments, our model substantially outperforms existing state-of-the-art architectures.
arXiv Detail & Related papers (2020-02-11T00:31:31Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.