論文の概要: Local Statistics for Generative Image Detection
- arxiv url: http://arxiv.org/abs/2310.16684v1
- Date: Wed, 25 Oct 2023 14:47:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 14:12:44.868902
- Title: Local Statistics for Generative Image Detection
- Title(参考訳): 生成画像検出のための局所統計
- Authors: Yung Jer Wong, Teck Khim Ng
- Abstract要約: 拡散モデル (DM) はガウスノイズから画像の合成を学ぶ生成モデルである。
我々は、デジタルカメラ画像とDM生成画像の区別において、グローバル統計とは対照的に局所統計計算の有効性を強調した。
- 参考スコア(独自算出の注目度): 1.8492669447784602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models (DMs) are generative models that learn to synthesize images
from Gaussian noise. DMs can be trained to do a variety of tasks such as image
generation and image super-resolution. Researchers have made significant
improvement in the capability of synthesizing photorealistic images in the past
few years. These successes also hasten the need to address the potential misuse
of synthesized images. In this paper, we highlight the effectiveness of
computing local statistics, as opposed to global statistics, in distinguishing
digital camera images from DM-generated images. We hypothesized that local
statistics should be used to address the spatial non-stationarity problem in
images. We show that our approach produced promising results and it is also
robust to various perturbations such as image resizing and JPEG compression.
- Abstract(参考訳): 拡散モデル (DM) はガウスノイズから画像の合成を学ぶ生成モデルである。
DMは、画像生成や画像超解像などの様々なタスクを訓練することができる。
研究者たちは、ここ数年でフォトリアリスティック画像を合成する能力を大幅に改善した。
これらの成功は、合成画像の潜在的な誤用に対処する必要性も高まる。
本稿では,dm生成画像とデジタルカメラ画像の区別において,グローバル統計とは対照的に,局所統計計算の有効性を強調する。
局所統計は画像の空間的非定常問題に対処するために使われるべきだと仮定した。
我々は,提案手法が有望な結果をもたらし,画像の縮小やJPEG圧縮といった様々な摂動にも頑健であることを示す。
関連論文リスト
- ZoomLDM: Latent Diffusion Model for multi-scale image generation [57.639937071834986]
複数のスケールで画像を生成するための拡散モデルZoomLDMを提案する。
我々のアプローチの中心は、自己教師あり学習(SSL)埋め込みを利用した、新たな拡大対応条件付け機構である。
ZoomLDMは、すべてのスケールにわたる最先端の画像生成品質を実現し、大きな画像全体のサムネイルを生成するデータスカース設定に優れています。
論文 参考訳(メタデータ) (2024-11-25T22:39:22Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
本稿では,コンテンツ適応型画像表現であるImage-GSを提案する。
異方性2Dガウスアンをベースとして、Image-GSは高いメモリ効率を示し、高速なランダムアクセスをサポートし、自然なレベルのディテールスタックを提供する。
画像-GSの一般的な効率性と忠実性は、最近のニューラルイメージ表現と業界標準テクスチャ圧縮機に対して検証される。
この研究は、機械認識、アセットストリーミング、コンテンツ生成など、適応的な品質とリソース制御を必要とする新しいアプリケーションを開発するための洞察を与えてくれることを願っている。
論文 参考訳(メタデータ) (2024-07-02T00:45:21Z) - Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
大規模因子超解像(SR)アルゴリズムは、軌道から取得した低解像度(LR)衛星データの最大化に不可欠である。
既存の手法では、鮮明なテクスチャと正しい接地オブジェクトでSR画像を復元する際の課題に直面している。
本稿では,大規模リモートセンシング画像の超解像を実現するための新しいフレームワークであるセマンティックガイド拡散モデル(SGDM)を提案する。
論文 参考訳(メタデータ) (2024-05-11T16:06:16Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
拡散モデル(DM)は画像生成に革命をもたらし、様々な分野にまたがる高品質な画像を生成する。
超現実的画像を作成する能力は、現実的コンテンツと合成的コンテンツを区別する上で大きな課題となる。
この研究は、CLIPモデルによって抽出された画像とテキストの特徴をMLP(Multilayer Perceptron)分類器と統合する堅牢な検出フレームワークを導入する。
論文 参考訳(メタデータ) (2024-04-19T14:30:41Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
下流の画像処理タスクのための純粋合成画像のモデルを訓練すると、実際のデータに対するトレーニングに比べ、望ましくない性能低下が生じる。
本稿では,この現象に寄与する要因を記述した新しい分類法を提案し,CIFAR-10データセットを用いて検討する。
本手法は,合成データと合成データの混合による学習と合成データのみの学習において,下流分類タスクのベースラインに優れる。
論文 参考訳(メタデータ) (2023-11-07T12:57:58Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
与えられた画像の5つの統計的測度から算出した画像リアリズムスコア(IRS)と呼ばれるメトリクスを提案する。
IRSは、与えられた画像を実または偽のものとして分類する手段として容易に利用できる。
我々は,安定拡散モデル (SDM) , Dalle2, Midjourney, BigGAN による偽画像の検出に成功して,提案したIRSのモデルおよびデータに依存しない性質を実験的に確立した。
このデータセットは、高品質の4つのモデルによって生成される100のクラスに対して1,000のサンプルを提供します。
論文 参考訳(メタデータ) (2023-09-26T08:32:55Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - Representation Learning with Diffusion Models [0.0]
拡散モデル (DM) は画像合成タスクや密度推定において最先端の結果を得た。
拡散モデル(LRDM)を用いてそのような表現を学習するためのフレームワークを提案する。
特に、DMと表現エンコーダは、生成的認知過程に特有の豊かな表現を学習するために、共同で訓練される。
論文 参考訳(メタデータ) (2022-10-20T07:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。