論文の概要: An Explainable Deep Learning-Based Method For Schizophrenia Diagnosis Using Generative Data-Augmentation
- arxiv url: http://arxiv.org/abs/2310.16867v2
- Date: Tue, 16 Jul 2024 19:51:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 23:18:25.760001
- Title: An Explainable Deep Learning-Based Method For Schizophrenia Diagnosis Using Generative Data-Augmentation
- Title(参考訳): 生成的データ拡張を用いた統合失調症診断のための説明可能な深層学習手法
- Authors: Mehrshad Saadatinia, Armin Salimi-Badr,
- Abstract要約: 脳波記録を用いた統合失調症の自動診断にディープラーニングを用いた手法を応用した。
このアプローチは、診断の精度を高める強力な手法である生成データ拡張を利用する。
- 参考スコア(独自算出の注目度): 0.3222802562733786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we leverage a deep learning-based method for the automatic diagnosis of schizophrenia using EEG brain recordings. This approach utilizes generative data augmentation, a powerful technique that enhances the accuracy of the diagnosis. To enable the utilization of time-frequency features, spectrograms were extracted from the raw signals. After exploring several neural network architectural setups, a proper convolutional neural network (CNN) was used for the initial diagnosis. Subsequently, using Wasserstein GAN with Gradient Penalty (WGAN-GP) and Variational Autoencoder (VAE), two different synthetic datasets were generated in order to augment the initial dataset and address the over-fitting issue. The augmented dataset using VAE achieved a 3.0\% improvement in accuracy reaching up to 99.0\% and yielded a lower loss value as well as a faster convergence. Finally, we addressed the lack of trust in black-box models using the Local Interpretable Model-agnostic Explanations (LIME) algorithm to determine the most important superpixels (frequencies) in the diagnosis process.
- Abstract(参考訳): 本研究では,脳波記録を用いた統合失調症の自動診断にディープラーニングを用いた手法を応用した。
このアプローチは、診断の精度を高める強力な手法である生成データ拡張を利用する。
時間周波数特性を利用するために, 原信号からスペクトルを抽出した。
いくつかのニューラルネットワークアーキテクチャのセットアップを探索した後、最初の診断には適切な畳み込みニューラルネットワーク(CNN)が使用された。
その後、Wasserstein GAN と Gradient Penalty (WGAN-GP) と Variational Autoencoder (VAE) を用いて、2つの異なる合成データセットを生成し、初期データセットを増大させ、過度に適合する問題に対処した。
VAEを用いたデータセットの精度は最大99.0.%まで3.0\%向上し、損失値も低く、収束も速くなった。
最後に、診断過程において最も重要なスーパーピクセル(周波数)を決定するために、Local Interpretable Model-Agnostic Explanations (LIME)アルゴリズムを用いたブラックボックスモデルの信頼性の欠如に対処した。
関連論文リスト
- Denoising Variational Autoencoder as a Feature Reduction Pipeline for the diagnosis of Autism based on Resting-state fMRI [11.871709357017416]
自閉症スペクトラム障害(Autism spectrum disorder、ASD)は、発達過程において、制限された関心とコミュニケーションの困難を特徴とする疾患である。
静止状態fMRI(rs-fMRI)を用いたASD特徴量削減パイプラインを提案する。
我々はNcutsのパーセレーションとPower atlasを使って機能的な接続データを抽出し、3万以上の機能を実現した。
論文 参考訳(メタデータ) (2024-09-30T09:38:47Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
本稿では,糖尿病網膜症の早期発見と管理を目的としたアンサンブル学習手法を提案する。
提案したモデルはAPTOSデータセット上でテストされ、以前のモデルと比較して検証精度(99%)の優位性を示している。
論文 参考訳(メタデータ) (2024-07-25T04:09:17Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Automatic Diagnosis of Schizophrenia and Attention Deficit Hyperactivity
Disorder in rs-fMRI Modality using Convolutional Autoencoder Model and
Interval Type-2 Fuzzy Regression [10.735837620134964]
本稿では,新しいディープラーニング(DL)法を用いた静止状態fMRI(rs-fMRI)のSZおよびADHDインテリジェント検出法を提案する。
SZおよびADHD患者のrs-fMRIモダリティを含むUCLAデータセットが実験に使用されている。
論文 参考訳(メタデータ) (2022-05-31T15:07:29Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Interpreting Deep Learning Models for Epileptic Seizure Detection on EEG
signals [4.748221780751802]
ディープラーニング(DL)は、しばしば人工知能ベースの医療意思決定支援の最先端とみなされます。
臨床現場では未だに実装されており、ニューラルネットワークモデルの解釈能力が不十分なため、臨床医の信頼は低い。
脳波信号に基づくてんかん発作のオンライン検出の文脈で解釈可能なDLモデルを開発することでこの問題に対処した。
論文 参考訳(メタデータ) (2020-12-22T11:10:23Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Neural Architecture Search For Fault Diagnosis [6.226564415963648]
ディープラーニングはビッグデータ処理に適しており、エンドツーエンドの故障診断システムを実現する強力な特徴抽出機能を備えている。
ニューラルアーキテクチャサーチ(NAS)は急速に発展しており、ディープラーニングの次の方向性の1つになりつつある。
本稿では,補強学習を用いたNAS法による断層診断手法を提案する。
論文 参考訳(メタデータ) (2020-02-19T04:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。