論文の概要: Symbolic Planning and Code Generation for Grounded Dialogue
- arxiv url: http://arxiv.org/abs/2310.17140v1
- Date: Thu, 26 Oct 2023 04:22:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 22:13:45.054054
- Title: Symbolic Planning and Code Generation for Grounded Dialogue
- Title(参考訳): 接地対話のための記号計画と符号生成
- Authors: Justin T. Chiu, Wenting Zhao, Derek Chen, Saujas Vaduguru, Alexander
M. Rush, Daniel Fried
- Abstract要約: 大規模言語モデル(LLM)は、テキストとコードの両方の処理と生成に優れる。
本稿では,LLMをシンボリックプランナと接地コード実行で構成することで,欠点に対処する,モジュール型で解釈可能な接地対話システムを提案する。
我々のシステムは、人間の評価におけるタスク成功率を最も困難な環境で56%から69%に改善するなど、従来の最先端技術よりも大幅に優れています。
- 参考スコア(独自算出の注目度): 78.48668501764385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) excel at processing and generating both text and
code. However, LLMs have had limited applicability in grounded task-oriented
dialogue as they are difficult to steer toward task objectives and fail to
handle novel grounding. We present a modular and interpretable grounded
dialogue system that addresses these shortcomings by composing LLMs with a
symbolic planner and grounded code execution. Our system consists of a reader
and planner: the reader leverages an LLM to convert partner utterances into
executable code, calling functions that perform grounding. The translated
code's output is stored to track dialogue state, while a symbolic planner
determines the next appropriate response. We evaluate our system's performance
on the demanding OneCommon dialogue task, involving collaborative reference
resolution on abstract images of scattered dots. Our system substantially
outperforms the previous state-of-the-art, including improving task success in
human evaluations from 56% to 69% in the most challenging setting.
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキストとコードの両方の処理と生成に優れる。
しかし, LLM は, タスク目標に向けての操作が困難であり, 新規な接地処理の処理が困難であるため, 接地型対話に適用性に限界がある。
本稿では,LLMを記号プランナと接地コード実行で構成することで,これらの欠点に対処する,モジュール的で解釈可能な接地対話システムを提案する。
読者はllmを利用してパートナーの発話を実行可能なコードに変換し、グランド化を実行する関数を呼び出す。
翻訳されたコードの出力は対話状態を追跡するために格納され、シンボリックプランナーは次の適切な応答を決定する。
分散ドットの抽象画像に対する協調参照解決を含む,要求されるOneCommon対話タスクにおけるシステムの性能を評価する。
我々のシステムは、人間の評価におけるタスク成功率を56%から69%に改善するなど、これまでの最先端よりも大幅に向上した。
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
大規模言語モデル(LLM)は対話型タスクにおけるエージェントとして大きな可能性を証明している。
数十億のパラメータを持つLLMの性能を、はるかに小さな言語モデルに転送する手法を提案する。
困難かつマルチタスクな対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%超えている。
論文 参考訳(メタデータ) (2024-05-04T20:34:06Z) - Natural Language as Policies: Reasoning for Coordinate-Level Embodied Control with LLMs [7.746160514029531]
ロボットのタスク計画問題に対処するLLMによる実験結果を示す。
提案手法はタスクとシーンオブジェクトのテキスト記述を取得し,自然言語推論によるタスクプランニングを定式化する。
提案手法はマルチモーダル・プロンプト・シミュレーション・ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2024-03-20T17:58:12Z) - Reasoning in Conversation: Solving Subjective Tasks through Dialogue
Simulation for Large Language Models [56.93074140619464]
本稿では,対話シミュレーションによる主観的課題の解決に焦点を当てたRiC(Reasoning in Conversation)を提案する。
RiCのモチベーションは、チェーン・オブ・ソート・スタイルの合理性を提供するのではなく、対話をシミュレートすることで有用な文脈情報をマイニングすることである。
GPT-4、ChatGPT、OpenChatなど、APIベースのLLMとオープンソースのLLMの両方を12のタスクで評価する。
論文 参考訳(メタデータ) (2024-02-27T05:37:10Z) - DoReMi: Grounding Language Model by Detecting and Recovering from Plan-Execution Misalignment [10.322491116030825]
DoReMiは、計画と実行間のミスアライメントの検出とリカバリを可能にする。
パイプラインは、低レベルの実行を監視し、特定の計画実行ミスアライメントが発生した場合、タイムリなリカバリを可能にします。
論文 参考訳(メタデータ) (2023-07-01T12:51:02Z) - AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers [20.857692296678632]
人間とロボットの効果的なインタラクションには、ロボットは複雑な長期的タスクを理解し、計画し、実行する必要がある。
大規模言語モデルの最近の進歩は、自然言語をロボットのアクションシーケンスに変換することを約束している。
本研究では,複雑なタスク領域において,LLMをプランナとして用いる手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-10T21:58:29Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
本研究は, 明瞭化, 目標誘導, 非協調対話の3つの側面に焦点をあてる。
LLMの能動性を高めるために,プロアクティブ・チェーン・オブ・ソート・プロンプト方式を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:49:35Z) - SGP-TOD: Building Task Bots Effortlessly via Schema-Guided LLM Prompting [43.02058641501056]
大規模言語モデル(LLM)は、会話のエンゲージメントにおいて例外的な熟練度を示した。
SGP-TOD,Guided Promptingを導入し,タスク指向のダイアログシステムを構築する。
SGP-TODは、ユーザと対話するためのLDMと、ダイアログ状態追跡を行うDSTプロンプタと、提供されたダイアログポリシーに準拠する適切な応答を引き出すポリシープロンプタの3つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-05-15T23:29:56Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
事前訓練された大言語モデル(LLM)は、世界に関する手続き的な知識をキャプチャする。
Plan, Eliminate, and Track (PET)フレームワークはタスク記述をハイレベルなサブタスクのリストに変換する。
PETフレームワークは、人間の目標仕様への一般化のために、SOTAよりも15%改善されている。
論文 参考訳(メタデータ) (2023-05-03T20:11:22Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。