論文の概要: fairret: a Framework for Differentiable Fairness Regularization Terms
- arxiv url: http://arxiv.org/abs/2310.17256v2
- Date: Wed, 10 Apr 2024 11:22:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 19:15:52.582764
- Title: fairret: a Framework for Differentiable Fairness Regularization Terms
- Title(参考訳): Fairret: 差別化可能な公平な正規化用語のためのフレームワーク
- Authors: Maarten Buyl, MaryBeth Defrance, Tijl De Bie,
- Abstract要約: 偏見をモジュラーでフレキシブルな目的として定量化するフェアネス規則化用語(フェアレット)の枠組みを導入する。
私たちのコントリビューションには、FairretフレームワークのPyTorch実装が含まれています。
- 参考スコア(独自算出の注目度): 12.774108753281809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current fairness toolkits in machine learning only admit a limited range of fairness definitions and have seen little integration with automatic differentiation libraries, despite the central role these libraries play in modern machine learning pipelines. We introduce a framework of fairness regularization terms (fairrets) which quantify bias as modular, flexible objectives that are easily integrated in automatic differentiation pipelines. By employing a general definition of fairness in terms of linear-fractional statistics, a wide class of fairrets can be computed efficiently. Experiments show the behavior of their gradients and their utility in enforcing fairness with minimal loss of predictive power compared to baselines. Our contribution includes a PyTorch implementation of the fairret framework.
- Abstract(参考訳): 現在の機械学習におけるフェアネスツールキットは、限定されたフェアネス定義しか認めておらず、これらのライブラリが現代の機械学習パイプラインで果たす中心的な役割にもかかわらず、自動微分ライブラリとはほとんど統合されていない。
偏見をモジュラーでフレキシブルな目的として定量化し、自動微分パイプラインに容易に組み込むフェアネス規則化用語(フェアレット)の枠組みを導入する。
線形屈折統計学の用語でフェアネスの一般的な定義を用いることで、広い種類のフェアレットを効率的に計算することができる。
実験では, ベースラインに比べて予測力の損失が最小限に抑えられた公平性を実現する上で, 勾配の挙動と有効性を示す。
私たちのコントリビューションには、FairretフレームワークのPyTorch実装が含まれています。
関連論文リスト
- Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
公平な分類モデルを学ぶための新しい min-max F-divergence regularization フレームワークを提案する。
F分割測度は凸性と微分可能性特性を有することを示す。
提案手法は, 精度と公平性のトレードオフに関して, 最先端の性能を実現するものであることを示す。
論文 参考訳(メタデータ) (2023-06-28T20:42:04Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
本稿では,グループフェアネス手法のベンチマークフレームワークであるFair Fairness Benchmark(textsfFFB)を紹介する。
グループフェアネスの異なる概念を確実にするための最先端手法を包括的に分析する。
論文 参考訳(メタデータ) (2023-06-15T19:51:28Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - FairGrad: Fairness Aware Gradient Descent [0.12183405753834563]
グループ固有の重みを反復的に学習する再重み付け方式に基づいて、公平性を強制するFairGradを提案する。
FairGradは実装が容易で、様々な標準のフェアネス定義に対応しており、オーバーヘッドは最小限である。
論文 参考訳(メタデータ) (2022-06-22T09:02:42Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Addressing Fairness in Classification with a Model-Agnostic
Multi-Objective Algorithm [33.145522561104464]
分類における公平性の目標は、人種や性別などのセンシティブな属性に基づいて個人のグループを識別しない分類器を学習することである。
公正アルゴリズムを設計する1つのアプローチは、公正の概念の緩和を正規化項として使うことである。
我々はこの性質を利用して、既存の緩和よりも証明可能な公正の概念を近似する微分可能な緩和を定義する。
論文 参考訳(メタデータ) (2020-09-09T17:40:24Z) - SenSeI: Sensitive Set Invariance for Enforcing Individual Fairness [50.916483212900275]
まず、ある感度集合の不変性を強制する個別の公正性のバージョンを定式化する。
次に,輸送型正規化器を設計し,個別の公平性を強制し,効率よく正規化器を最小化するためのアルゴリズムを開発する。
論文 参考訳(メタデータ) (2020-06-25T04:31:57Z) - Counterfactual fairness: removing direct effects through regularization [0.0]
制御ダイレクトエフェクト(CDE)による因果関係を考慮したフェアネスの新たな定義を提案する。
我々は古典的公正度対策に取り組むための正規化を開発し、新しい公正度定義を満たす因果正則化を示す。
その結果,モデル性能を低下させることなく,予測から不公平さを軽減できることが判明した。
論文 参考訳(メタデータ) (2020-02-25T10:13:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。