論文の概要: Causal Modeling with Stationary Diffusions
- arxiv url: http://arxiv.org/abs/2310.17405v2
- Date: Sat, 16 Mar 2024 17:58:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 03:12:40.342633
- Title: Causal Modeling with Stationary Diffusions
- Title(参考訳): 定常拡散による因果モデリング
- Authors: Lars Lorch, Andreas Krause, Bernhard Schölkopf,
- Abstract要約: 定常密度が干渉下でのシステムの挙動をモデル化する微分方程式を学習する。
古典的アプローチよりもよく、変数に対する見当たらない介入を一般化することを示します。
提案手法は,再生カーネルヒルベルト空間における拡散発生器の定常状態を表す新しい理論結果に基づく。
- 参考スコア(独自算出の注目度): 89.94899196106223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a novel approach towards causal inference. Rather than structural equations over a causal graph, we learn stochastic differential equations (SDEs) whose stationary densities model a system's behavior under interventions. These stationary diffusion models do not require the formalism of causal graphs, let alone the common assumption of acyclicity. We show that in several cases, they generalize to unseen interventions on their variables, often better than classical approaches. Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space. The resulting kernel deviation from stationarity (KDS) is an objective function of independent interest.
- Abstract(参考訳): 我々は因果推論に対する新しいアプローチを開発する。
因果グラフ上の構造方程式ではなく、定常密度が介入の下で系の振舞いをモデル化する確率微分方程式(SDE)を学ぶ。
これらの定常拡散モデルは、非巡回性の一般的な仮定は言うまでもなく、因果グラフの形式主義を必要としない。
いくつかのケースでは、変数に対する目に見えない介入を一般化し、しばしば古典的なアプローチよりも優れていることを示す。
提案手法は,再生カーネルヒルベルト空間における拡散発生器の定常状態を表す新しい理論結果に基づく。
固定性(KDS)からのカーネルの逸脱は、独立した関心の客観的な機能である。
関連論文リスト
- G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework [11.71206628091551]
L'evy型積分に基づく離散拡散モデルの誤差解析のための包括的フレームワークを提案する。
我々のフレームワークは、離散拡散モデルにおける現在の理論結果を統一し、強化する。
論文 参考訳(メタデータ) (2024-10-04T16:59:29Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - Radiative transport in a periodic structure with band crossings [52.24960876753079]
任意の空間次元におけるシュリンガー方程式の半古典モデル(英語版)を導出する。
決定論的シナリオとランダムシナリオの両方を考慮する。
特定の応用として、ランダムなグラフェン中のウェーブパケットの有効ダイナミクスを導出する。
論文 参考訳(メタデータ) (2024-02-09T23:34:32Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
ゼロ拡散(ODE)の場合と大きな拡散の場合の2つの制限シナリオについて数学的に検討する。
その結果, 生成過程の終端に摂動が発生すると, ODEモデルは大きな拡散係数でSDEモデルより優れることがわかった。
論文 参考訳(メタデータ) (2023-06-03T09:27:15Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
提案したBSDEベースの拡散モデルは、機械学習における微分方程式(SDE)の適用を拡大する拡散モデリングの新しいアプローチを示す。
モデルの理論的保証、スコアマッチングにリプシッツネットワークを用いることの利点、および拡散反転、条件拡散、不確実性定量化など様々な分野への応用の可能性を示す。
論文 参考訳(メタデータ) (2023-04-26T01:15:35Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - Stochastic Differential Equations with Variational Wishart Diffusions [18.590352916158093]
回帰タスクと連続時間力学モデリングの両方に対して微分方程式を推論する非パラメトリックな方法を提案する。
この研究は微分方程式の一部(拡散とも呼ばれる)に重点を置いており、ウィッシュアート過程を用いてモデル化している。
論文 参考訳(メタデータ) (2020-06-26T10:21:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。