論文の概要: Stochastic Differential Equations with Variational Wishart Diffusions
- arxiv url: http://arxiv.org/abs/2006.14895v1
- Date: Fri, 26 Jun 2020 10:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 21:05:25.185642
- Title: Stochastic Differential Equations with Variational Wishart Diffusions
- Title(参考訳): 変分ウィッシュアート拡散をもつ確率微分方程式
- Authors: Martin J{\o}rgensen, Marc Peter Deisenroth, Hugh Salimbeni
- Abstract要約: 回帰タスクと連続時間力学モデリングの両方に対して微分方程式を推論する非パラメトリックな方法を提案する。
この研究は微分方程式の一部(拡散とも呼ばれる)に重点を置いており、ウィッシュアート過程を用いてモデル化している。
- 参考スコア(独自算出の注目度): 18.590352916158093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a Bayesian non-parametric way of inferring stochastic differential
equations for both regression tasks and continuous-time dynamical modelling.
The work has high emphasis on the stochastic part of the differential equation,
also known as the diffusion, and modelling it by means of Wishart processes.
Further, we present a semi-parametric approach that allows the framework to
scale to high dimensions. This successfully lead us onto how to model both
latent and auto-regressive temporal systems with conditional heteroskedastic
noise. We provide experimental evidence that modelling diffusion often improves
performance and that this randomness in the differential equation can be
essential to avoid overfitting.
- Abstract(参考訳): 回帰タスクと連続時間力学モデルの両方に対して確率微分方程式を推論するベイズ非パラメトリックな方法を提案する。
この研究は微分方程式の確率的部分(拡散とも呼ばれる)に重点を置いており、ウィッシュアート過程を用いてモデル化している。
さらに,フレームワークを高次元に拡張する半パラメトリックな手法を提案する。
これにより、条件付きヘテロスケダスティックノイズを伴う潜在時間と自己回帰時間の両方をモデル化する方法が成功しました。
モデル拡散はしばしば性能を向上し、微分方程式のこのランダム性は過度な適合を避けるために不可欠であることを示す実験的な証拠を提供する。
関連論文リスト
- Distillation of Discrete Diffusion through Dimensional Correlations [21.078500510691747]
離散拡散における「ミクチャー」モデルは、拡張性を維持しながら次元相関を扱える。
CIFAR-10データセットで事前学習した連続時間離散拡散モデルを蒸留することにより,提案手法が実際に動作することを実証的に実証した。
論文 参考訳(メタデータ) (2024-10-11T10:53:03Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
定常密度が干渉下でのシステムの挙動をモデル化する微分方程式を学習する。
古典的アプローチよりもよく、変数に対する見当たらない介入を一般化することを示します。
提案手法は,再生カーネルヒルベルト空間における拡散発生器の定常状態を表す新しい理論結果に基づく。
論文 参考訳(メタデータ) (2023-10-26T14:01:17Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
本稿では,データからのスパース制御方程式の深部生成モデルを用いた動的モデリングフレームワークHyperSINDyを紹介する。
一度訓練すると、HyperSINDyは、係数が白色雑音によって駆動される微分方程式を介して力学を生成する。
実験では、HyperSINDyはデータと一致するように学習度をスケーリングすることで、基底的真理支配方程式を復元する。
論文 参考訳(メタデータ) (2023-10-07T14:41:59Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
提案したBSDEベースの拡散モデルは、機械学習における微分方程式(SDE)の適用を拡大する拡散モデリングの新しいアプローチを示す。
モデルの理論的保証、スコアマッチングにリプシッツネットワークを用いることの利点、および拡散反転、条件拡散、不確実性定量化など様々な分野への応用の可能性を示す。
論文 参考訳(メタデータ) (2023-04-26T01:15:35Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Moment evolution equations and moment matching for stochastic image
EPDiff [68.97335984455059]
画像変形モデルにより、画像領域を変形させることにより、時間連続的な画像変換の研究が可能になる。
応用例としては、人口傾向とランダムな被写体特定変異の両方を用いた医療画像分析がある。
パラメータフルモデルにおける統計的推測のための推定器を構築するために、対応する伊藤拡散のモーメント近似を用いる。
論文 参考訳(メタデータ) (2021-10-07T11:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。