論文の概要: A minimax optimal control approach for robust neural ODEs
- arxiv url: http://arxiv.org/abs/2310.17584v2
- Date: Fri, 3 Nov 2023 11:37:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-06 16:55:13.928121
- Title: A minimax optimal control approach for robust neural ODEs
- Title(参考訳): 頑健なニューラル・オードに対する極小最適制御法
- Authors: Cristina Cipriani, Alessandro Scagliotti, Tobias W\"ohrer
- Abstract要約: 我々は、頑健な制御の観点から、ニューラルなODEの敵対的訓練に対処する。
我々はポントリャーギンの最大原理の形で一階最適条件を導出する。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the adversarial training of neural ODEs from a
robust control perspective. This is an alternative to the classical training
via empirical risk minimization, and it is widely used to enforce reliable
outcomes for input perturbations. Neural ODEs allow the interpretation of deep
neural networks as discretizations of control systems, unlocking powerful tools
from control theory for the development and the understanding of machine
learning. In this specific case, we formulate the adversarial training with
perturbed data as a minimax optimal control problem, for which we derive first
order optimality conditions in the form of Pontryagin's Maximum Principle. We
provide a novel interpretation of robust training leading to an alternative
weighted technique, which we test on a low-dimensional classification task.
- Abstract(参考訳): 本稿では,頑健な制御の観点から,ニューラルなODEの対角的訓練について述べる。
これは経験的リスク最小化による古典的な訓練の代替であり、入力摂動に対する信頼性の高い結果の強制に広く用いられている。
ニューラルネットワークは、深層ニューラルネットワークを制御システムの離散化として解釈し、制御理論から強力なツールを解き放ち、機械学習の開発と理解を可能にする。
この特定の場合において、摂動データを用いた対角トレーニングを極小最適制御問題として定式化し、ポントリャーギンの最大原理の形で一階最適条件を導出する。
我々は、低次元の分類タスクでテストする代替の重み付け手法に導く、頑健なトレーニングの新たな解釈を提供する。
関連論文リスト
- Gradient-free training of neural ODEs for system identification and
control using ensemble Kalman inversion [0.0]
アンサンブル・カルマン反転(英: Ensemble Kalman inversion、EKI)は、ベイズフレームワーク内の逆問題を解決するために用いられる連続モンテカルロ法である。
本研究では, ニューラル・常微分方程式(ニューラル・オード)の学習におけるEKIの有効性について検討した。
論文 参考訳(メタデータ) (2023-07-15T20:45:50Z) - Learning to Precode for Integrated Sensing and Communications Systems [11.689567114100514]
我々はISACシステムのための送信プリコーダを設計するための教師なし学習ニューラルモデルを提案する。
提案手法は,チャネル推定誤差が存在する場合,従来の最適化手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-11T11:24:18Z) - The least-control principle for learning at equilibrium [65.2998274413952]
我々は、平衡反復ニューラルネットワーク、深層平衡モデル、メタラーニングを学ぶための新しい原理を提案する。
私たちの結果は、脳がどのように学習するかを明らかにし、幅広い機械学習問題にアプローチする新しい方法を提供します。
論文 参考訳(メタデータ) (2022-07-04T11:27:08Z) - Imbedding Deep Neural Networks [0.0]
ニューラルODEのような連続深度ニューラルネットワークは、非線形ベクトル値の最適制御問題の観点から、残留ニューラルネットワークの理解を再燃させた。
本稿では,ネットワークの深さを基本変数とする新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T22:00:41Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
ディープニューラルネットワークは、トレーニングにおいて、しばしばローカルな最小限に閉じ込められる。
新しいカーネル拡張ニューラルネットワーク(K-StoNet)モデルは、潜在変数モデルとしてネットワークを再構成する。
モデルは命令正規化最適化(IRO)アルゴリズムを用いて容易に訓練することができる。
論文 参考訳(メタデータ) (2022-01-14T06:42:42Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Constraint-Based Regularization of Neural Networks [0.0]
本稿では,ニューラルネットワークの学習のためのグラデーション・ランゲヴィン・フレームワークに制約を効率的に組み込む手法を提案する。
適切に設計され、消滅/爆発する勾配問題を減らし、重みを制御し、ディープニューラルネットワークを安定化する。
論文 参考訳(メタデータ) (2020-06-17T19:28:41Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。