論文の概要: Gradient-free training of neural ODEs for system identification and
control using ensemble Kalman inversion
- arxiv url: http://arxiv.org/abs/2307.07882v1
- Date: Sat, 15 Jul 2023 20:45:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 17:20:44.365005
- Title: Gradient-free training of neural ODEs for system identification and
control using ensemble Kalman inversion
- Title(参考訳): アンサンブルカルマンインバージョンを用いたシステム同定と制御のためのニューラルネットワークのグラディエントフリートレーニング
- Authors: Lucas B\"ottcher
- Abstract要約: アンサンブル・カルマン反転(英: Ensemble Kalman inversion、EKI)は、ベイズフレームワーク内の逆問題を解決するために用いられる連続モンテカルロ法である。
本研究では, ニューラル・常微分方程式(ニューラル・オード)の学習におけるEKIの有効性について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensemble Kalman inversion (EKI) is a sequential Monte Carlo method used to
solve inverse problems within a Bayesian framework. Unlike backpropagation, EKI
is a gradient-free optimization method that only necessitates the evaluation of
artificial neural networks in forward passes. In this study, we examine the
effectiveness of EKI in training neural ordinary differential equations (neural
ODEs) for system identification and control tasks. To apply EKI to optimal
control problems, we formulate inverse problems that incorporate a
Tikhonov-type regularization term. Our numerical results demonstrate that EKI
is an efficient method for training neural ODEs in system identification and
optimal control problems, with runtime and quality of solutions that are
competitive with commonly used gradient-based optimizers.
- Abstract(参考訳): アンサンブル・カルマン反転(英: Ensemble Kalman inversion、EKI)は、ベイズフレームワーク内の逆問題を解決するために用いられる連続モンテカルロ法である。
バックプロパゲーションとは異なり、EKIは、前方通過における人工ニューラルネットワークの評価のみを必要とする勾配のない最適化手法である。
本研究では,神経常微分方程式(neural normal differential equation,neural odes)の学習におけるekiの有効性について検討した。
EKIを最適制御問題に適用するために、Tikhonov型正規化項を含む逆問題を定式化する。
提案手法は,システム同定や最適制御問題において効率的にニューラルネットワークを訓練する手法であり,一般的な勾配型最適化器と競合するソリューションのランタイムと品質が向上することを示す。
関連論文リスト
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems [13.285775352653546]
本稿では,ディープニューラルネットワークに基づく一階および二階のスコア関数を表すニューラルディファレンシャル方程式のシステムを提案する。
本研究では,個々の雑音に対する平均粘性場制御(MFC)問題を,提案したニューラルODEシステムによって構成された制約のない最適化問題に再構成する。
論文 参考訳(メタデータ) (2024-09-24T21:45:55Z) - A minimax optimal control approach for robust neural ODEs [44.99833362998488]
我々は、頑健な制御の観点から、ニューラルなODEの敵対的訓練に対処する。
我々はポントリャーギンの最大原理の形で一階最適条件を導出する。
論文 参考訳(メタデータ) (2023-10-26T17:07:43Z) - Application of deep and reinforcement learning to boundary control
problems [0.6906005491572401]
目的は、囲まれたドメインが所望の状態値に達するように、ドメイン境界に対する最適な値を見つけることである。
本研究は,ディープラーニングと強化学習による境界制御問題の解決の可能性を探る。
論文 参考訳(メタデータ) (2023-10-21T10:56:32Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
アダプティブと呼ばれるいくつかのODEソルバは、目の前の問題の複雑さに応じて評価戦略を適用することができる。
本稿では,動的システムモデリングのためのブラックボックスとして適応型ソルバをシームレスに利用できない理由を示すための簡単な実験について述べる。
論文 参考訳(メタデータ) (2022-11-13T17:48:04Z) - A memory-efficient neural ODE framework based on high-level adjoint
differentiation [4.063868707697316]
我々は、高レベル離散アルゴリズムの微分に基づく新しいニューラルODEフレームワーク、PNODEを提案する。
PNODEは他の逆精度の手法と比較してメモリ効率が最も高いことを示す。
論文 参考訳(メタデータ) (2022-06-02T20:46:26Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。