Quantum operations restricted by no faster-than-light communication
principle and generic emergence of objectivity in position basis
- URL: http://arxiv.org/abs/2310.18133v1
- Date: Fri, 27 Oct 2023 13:24:16 GMT
- Title: Quantum operations restricted by no faster-than-light communication
principle and generic emergence of objectivity in position basis
- Authors: Rajendra Singh Bhati and Arvind
- Abstract summary: We show that interactions between internal degrees of freedom cause system wave functions to branch in the position basis.
We apply this result to a spin decoherence model to demonstrate that a generic thermal spin-1/2 bath redundantly records information about the position of a spin-1/2 particle.
- Score: 3.938408636541758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of the objective classical world from the quantum behavior of
microscopic constituents is not fully understood. Models based on decoherence
and the principle of quantum Darwinism, which attempt to provide such an
explanation, require system-bath interactions in a preferred basis. Thus, the
generic emergence of objectivity in the position basis, as observed in the real
world remains unexplained. In this Letter, we present a no-go theorem based on
the principle of no-faster-than-light communication, showing that interactions
between internal degrees of freedom unavoidably cause system wave functions to
branch in the position basis. We apply this result to a spin decoherence model
to demonstrate that a generic thermal spin-1/2 bath redundantly records
information about the position of a spin-1/2 particle. Notably, the model does
not assume any preferred spin interaction. These findings represent a
compelling demonstration of the generic emergence of objectivity in the
position basis.
Related papers
- Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Non-Gaussian dynamics of quantum fluctuations and mean-field limit in
open quantum central spin systems [0.0]
Central spin systems are paradigmatic models for nitrogen-vacancy centers and quantum dots.
Here, we derive exact results on the emergent behavior of open quantum central spin systems.
Our findings may become relevant for developing fully quantum descriptions of many-body solid-state devices.
arXiv Detail & Related papers (2023-05-24T20:23:31Z) - High-dimensional monitoring and the emergence of realism via multiple observers [41.94295877935867]
Correlation is the basic mechanism of every measurement model.
We introduce a model that interpolates between weak and strong non-selective measurements for qudits.
arXiv Detail & Related papers (2023-05-13T13:42:19Z) - On a foundational conceptual principle of quantum mechanics [0.0]
Anton Zeilinger's "foundational conceptual principle" for quantum mechanics is an idealistic principle, which should be replaced by a realistic principle of contextuality.
We argue that the assumption of non-locality is not required to explain quantum correlation.
In contrast to Zeilinger's proposed principle of quantization of information, the principle of contextuality explains it realistically.
arXiv Detail & Related papers (2022-03-26T11:24:14Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Quantum Darwinism in a structured spin environment [0.0]
We introduce an extended spin-star model where the system is coupled to $N$ independent spin-chains.
Each site of the chain then lives in a definite layer of the environment, and hence we term this the "onion" model.
Considering a fully factorized initial state for all constituent sub-systems, we then examine how the emergence and proliferation of signatures of quantum Darwinism are delicately dependent on the chain interaction.
arXiv Detail & Related papers (2020-11-26T16:54:17Z) - Relativistic spin operator must be intrinsic [0.0]
There is no consensus concerning the set of properties that a relativistic spin observable should satisfy.
We present how to overcome this problem by imposing a condition that everyone should agree about the nature of the relativistic spin observable: it must be intrinsic.
arXiv Detail & Related papers (2020-08-04T03:39:10Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.