Equivariant simplicial distributions and quantum contextuality
- URL: http://arxiv.org/abs/2310.18135v1
- Date: Fri, 27 Oct 2023 13:25:46 GMT
- Title: Equivariant simplicial distributions and quantum contextuality
- Authors: Cihan Okay and Igor Sikora
- Abstract summary: We introduce an equivariant version of contextuality with respect to a symmetry group, which comes with natural applications to quantum theory.
In the equivariant setting, we construct cohomology classes that can detect contextuality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an equivariant version of contextuality with respect to a
symmetry group, which comes with natural applications to quantum theory. In the
equivariant setting, we construct cohomology classes that can detect
contextuality. This framework is motivated by the earlier topological approach
to contextuality producing cohomology classes that serve as computational
primitives in measurement-based quantum computing.
Related papers
- Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective [39.58317527488534]
We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
arXiv Detail & Related papers (2023-06-01T15:25:19Z) - The Stochastic-Quantum Correspondence [0.0]
This paper introduces an exact correspondence between a general class of systems and quantum theory.
This correspondence provides a new framework using Hilbert-space methods to formulate highly generic, non-Markovian types of dynamics.
This paper also uses the correspondence in the other direction to reconstruct quantum theory from physical models.
arXiv Detail & Related papers (2023-02-20T04:11:05Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Trace class operators and states in p-adic quantum mechanics [0.0]
We show that one can define a suitable space of trace class operators in the non-Archimedean setting.
The analogies, but also the several (highly non-trivial) differences, with respect to the case of standard quantum mechanics in a complex Hilbert space are analyzed.
arXiv Detail & Related papers (2022-10-04T12:44:22Z) - Self-adjointness in Quantum Mechanics: a pedagogical path [77.34726150561087]
This paper aims to make quantum observables emerge as necessarily self-adjoint, and not merely hermitian operators.
Next to the central core of our line of reasoning, the necessity of a non-trivial declaration of a domain to associate with the formal action of an observable.
arXiv Detail & Related papers (2020-12-28T21:19:33Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - The logic of contextuality [0.0]
Contextuality is a key signature of quantum non-classicality.
We study the logic of contextuality in the setting of partial Boolean algebras.
arXiv Detail & Related papers (2020-11-05T19:04:04Z) - Classical-quantum correspondence for two-level pseudo-Hermitian systems [0.0]
We show that the presence of a complex external field can be described by a pseudo-Hermitian Hamiltonian.
We construct a covariant quantization scheme which maps canonically related pseudoclassical theories to unitarily equivalent quantum realizations.
arXiv Detail & Related papers (2020-07-03T18:00:07Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Geometric viewpoint on the quantization of a fuzzy logic [0.0]
We give a description of quantum propositions in terms of fuzzy events in a complex projective space equipped with K"ahler structure (the quantum phase space)
We obtain a quantized version of a fuzzy logic by deformation of the product t-norm.
arXiv Detail & Related papers (2020-04-06T13:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.