Enhancing Enterprise Network Security: Comparing Machine-Level and
Process-Level Analysis for Dynamic Malware Detection
- URL: http://arxiv.org/abs/2310.18165v1
- Date: Fri, 27 Oct 2023 14:17:35 GMT
- Title: Enhancing Enterprise Network Security: Comparing Machine-Level and
Process-Level Analysis for Dynamic Malware Detection
- Authors: Baskoro Adi Pratomo, Toby Jackson, Pete Burnap, Andrew Hood, Eirini
Anthi
- Abstract summary: Dynamic analysis can overcome evasion techniques commonly used to bypass static analysis.
A malicious machine does not necessarily mean all running processes on the machine are also malicious.
The existence of background applications decreases previous state-of-the-art accuracy by about 20.12% on average.
- Score: 2.812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analysing malware is important to understand how malicious software works and
to develop appropriate detection and prevention methods. Dynamic analysis can
overcome evasion techniques commonly used to bypass static analysis and provide
insights into malware runtime activities. Much research on dynamic analysis
focused on investigating machine-level information (e.g., CPU, memory, network
usage) to identify whether a machine is running malicious activities. A
malicious machine does not necessarily mean all running processes on the
machine are also malicious. If we can isolate the malicious process instead of
isolating the whole machine, we could kill the malicious process, and the
machine can keep doing its job. Another challenge dynamic malware detection
research faces is that the samples are executed in one machine without any
background applications running. It is unrealistic as a computer typically runs
many benign (background) applications when a malware incident happens. Our
experiment with machine-level data shows that the existence of background
applications decreases previous state-of-the-art accuracy by about 20.12% on
average. We also proposed a process-level Recurrent Neural Network (RNN)-based
detection model. Our proposed model performs better than the machine-level
detection model; 0.049 increase in detection rate and a false-positive rate
below 0.1.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - JITScanner: Just-in-Time Executable Page Check in the Linux Operating System [6.725792100548271]
JITScanner is developed as a Linux-oriented package built upon a Loadable Kernel Module (LKM)
It integrates a user-level component that communicates efficiently with the LKM using scalable multi-processor/core technology.
JITScanner's effectiveness in detecting malware programs and its minimal intrusion in normal runtime scenarios have been extensively tested.
arXiv Detail & Related papers (2024-04-25T17:00:08Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - Discovering Malicious Signatures in Software from Structural
Interactions [7.06449725392051]
We propose a novel malware detection approach that leverages deep learning, mathematical techniques, and network science.
Our approach focuses on static and dynamic analysis and utilizes the Low-Level Virtual Machine (LLVM) to profile applications within a complex network.
Our approach marks a substantial improvement in malware detection, providing a notably more accurate and efficient solution.
arXiv Detail & Related papers (2023-12-19T23:42:20Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Sequential Embedding-based Attentive (SEA) classifier for malware
classification [1.290382979353427]
We come up with a solution for malware detection using state-of-the-art natural language processing (NLP) techniques.
Our proposed model is tested on the benchmark data set with an accuracy and log loss score of 99.13 percent and 0.04 respectively.
arXiv Detail & Related papers (2023-02-11T15:48:16Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning [0.0]
We propose a malware taxonomic classification pipeline able to classify Windows Portable Executable files (PEs)
Given an input PE sample, it is first classified as either malicious or benign.
If malicious, the pipeline further analyzes it in order to establish its threat type, family, and behavior(s)
arXiv Detail & Related papers (2021-06-10T10:07:50Z) - Early Detection of In-Memory Malicious Activity based on Run-time
Environmental Features [4.213427823201119]
We present a novel end-to-end solution for in-memory malicious activity detection done prior to exploitation.
This solution achieves reduced overhead and false positives as well as deployment simplicity.
arXiv Detail & Related papers (2021-03-30T02:19:00Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.