論文の概要: Deep Transformed Gaussian Processes
- arxiv url: http://arxiv.org/abs/2310.18230v1
- Date: Fri, 27 Oct 2023 16:09:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 13:22:20.605906
- Title: Deep Transformed Gaussian Processes
- Title(参考訳): 深く変換されたガウス過程
- Authors: S\'aez-Maldonado Francisco Javier, Maro\~nas Juan, Hern\'andez-Lobato
Daniel
- Abstract要約: 変換ガウス過程(英: Transformed Gaussian Processs、TGP)は、可逆変換を用いて、前者のプロセス(典型的にはGP)からサンプルを共分散から変換することによって定義される過程である。
本稿では,プロセスの階層化の傾向に従い,DTGP(Deep Transformed Gaussian Processs)と呼ばれるTGPの一般化を提案する。
実験では、提案したDTGPを複数の回帰データセットで評価し、優れたスケーラビリティと性能を実現した。
- 参考スコア(独自算出の注目度): 4.46110332312824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformed Gaussian Processes (TGPs) are stochastic processes specified by
transforming samples from the joint distribution from a prior process
(typically a GP) using an invertible transformation; increasing the flexibility
of the base process.
Furthermore, they achieve competitive results compared with Deep Gaussian
Processes (DGPs), which are another generalization constructed by a
hierarchical concatenation of GPs. In this work, we propose a generalization of
TGPs named Deep Transformed Gaussian Processes (DTGPs), which follows the trend
of concatenating layers of stochastic processes. More precisely, we obtain a
multi-layer model in which each layer is a TGP. This generalization implies an
increment of flexibility with respect to both TGPs and DGPs. Exact inference in
such a model is intractable. However, we show that one can use variational
inference to approximate the required computations yielding a straightforward
extension of the popular DSVI inference algorithm Salimbeni et al (2017). The
experiments conducted evaluate the proposed novel DTGPs in multiple regression
datasets, achieving good scalability and performance.
- Abstract(参考訳): 変換ガウス過程(英: transform gaussian process、tgps)は、逆変換を用いて先行過程(典型的にはgp)からサンプルをジョイント分布から変換し、基本過程の柔軟性を高めることにより定義される確率過程である。
さらに、GPの階層的連結によって構築された別の一般化であるディープガウス過程(DGP)と比較して、競合的な結果が得られる。
本研究では,確率過程の階層化の傾向に追従して,Deep Transformed Gaussian Processs (DTGPs) と呼ばれるTGPの一般化を提案する。
より正確には、各層がTGPである多層モデルを得る。
この一般化は、TGPとDGPの両方に対する柔軟性の増大を意味する。
そのようなモデルにおける厳密な推論は難解である。
しかし, DSVI推論アルゴリズムSalimbeni et al (2017) の直接拡張により, 必要な計算量を近似するために, 変分推論を利用できることを示す。
実験では,提案手法であるdtgpsを複数回帰データセットで評価し,スケーラビリティと性能を向上した。
関連論文リスト
- Domain Invariant Learning for Gaussian Processes and Bayesian
Exploration [39.83530605880014]
そこで本研究では,確率を最小限に最適化したガウス過程(DIL-GP)の領域不変学習アルゴリズムを提案する。
数値実験により、複数の合成および実世界のデータセットの予測におけるDIL-GPの優位性を示す。
論文 参考訳(メタデータ) (2023-12-18T16:13:34Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
クリックベースのインタラクティブセグメンテーション(IS)は、ユーザインタラクション下で対象オブジェクトを抽出することを目的としている。
現在のディープラーニング(DL)ベースの手法のほとんどは、主にセマンティックセグメンテーションの一般的なパイプラインに従っている。
本稿では,各画像上でガウス過程(GP)に基づく画素単位のバイナリ分類モデルとしてISタスクを定式化することを提案する。
論文 参考訳(メタデータ) (2023-02-28T14:01:01Z) - A Sparse Expansion For Deep Gaussian Processes [33.29293167413832]
ガウス過程(TMGP)に基づいた高精度な推論と効率的なトレーニングのための効率的なスキームを提案する。
合成モデルと実データセットに関する数値実験により、既存のDGPモデルよりもDTMGPの計算効率が優れていることを示した。
論文 参考訳(メタデータ) (2021-12-11T00:59:33Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Deep Gaussian Process Emulation using Stochastic Imputation [0.0]
本稿では,命令を用いた計算機モデルエミュレーションのための新しいディープガウス過程 (DGP) 推論法を提案する。
この手法は、遅延層を強制的に命令することで、DGPをリンクされたGPに変換し、これは、フィードフォワード結合GPの系をリンクすることによって形成される最先端の代理モデルである。
論文 参考訳(メタデータ) (2021-07-04T10:46:23Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Convolutional Normalizing Flows for Deep Gaussian Processes [40.10797051603641]
本稿では、柔軟で任意に複雑でスケーラブルな後方分布を特定するための新しいアプローチを提案する。
新しい畳み込み正規化フロー(CNF)が開発され、時間効率を改善し、層間の依存性を捉える。
経験的評価は、CNF DGPがDGPの最先端近似法より優れていることを示している。
論文 参考訳(メタデータ) (2021-04-17T07:25:25Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。