Anaphor Assisted Document-Level Relation Extraction
- URL: http://arxiv.org/abs/2310.18604v1
- Date: Sat, 28 Oct 2023 06:11:18 GMT
- Title: Anaphor Assisted Document-Level Relation Extraction
- Authors: Chonggang Lu, Richong Zhang, Kai Sun, Jaein Kim, Cunwang Zhang, Yongyi
Mao
- Abstract summary: Document-level relation extraction (DocRE) involves identifying relations between entities distributed in multiple sentences within a document.
Existing methods focus on building a heterogeneous document graph to model the internal structure of an entity and the external interaction between entities.
We propose an Anaphor-Assisted (AA) framework for DocRE tasks.
- Score: 42.57958231709678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction (DocRE) involves identifying relations
between entities distributed in multiple sentences within a document. Existing
methods focus on building a heterogeneous document graph to model the internal
structure of an entity and the external interaction between entities. However,
there are two drawbacks in existing methods. On one hand, anaphor plays an
important role in reasoning to identify relations between entities but is
ignored by these methods. On the other hand, these methods achieve
cross-sentence entity interactions implicitly by utilizing a document or
sentences as intermediate nodes. Such an approach has difficulties in learning
fine-grained interactions between entities across different sentences,
resulting in sub-optimal performance. To address these issues, we propose an
Anaphor-Assisted (AA) framework for DocRE tasks. Experimental results on the
widely-used datasets demonstrate that our model achieves a new state-of-the-art
performance.
Related papers
- Leveraging Inter-Chunk Interactions for Enhanced Retrieval in Large Language Model-Based Question Answering [12.60063463163226]
IIER captures the internal connections between document chunks by considering three types of interactions: structural, keyword, and semantic.
It identifies multiple seed nodes based on the target question and iteratively searches for relevant chunks to gather supporting evidence.
It refines the context and reasoning chain, aiding the large language model in reasoning and answer generation.
arXiv Detail & Related papers (2024-08-06T02:39:55Z) - Hypergraph based Understanding for Document Semantic Entity Recognition [65.84258776834524]
We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time.
Our results on FUNSD, CORD, XFUNDIE show that our method can effectively improve the performance of semantic entity recognition tasks.
arXiv Detail & Related papers (2024-07-09T14:35:49Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document.
advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents.
We propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper.
arXiv Detail & Related papers (2024-03-12T08:58:07Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
We propose a novel method, referred to as ASAC, to solve the dilemma caused by the nested phenomenon.
The proposed method contains two key modules: the adaptive shared (AS) part and the attentive conditional random field (ACRF) module.
Our model could learn better entity representations by capturing the implicit distinctions and relationships between different categories of entities.
arXiv Detail & Related papers (2022-11-09T09:23:56Z) - Relation-Specific Attentions over Entity Mentions for Enhanced
Document-Level Relation Extraction [4.685620089585031]
We propose RSMAN which performs selective attentions over different entity mentions with respect to candidate relations.
Our experiments upon two benchmark datasets show that our RSMAN can bring significant improvements for some backbone models.
arXiv Detail & Related papers (2022-05-28T10:40:31Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
Document-level relation extraction (DocRE) aims to determine the relation between two entities from a document of multiple sentences.
We propose a Sentence Estimation and Focusing (SIEF) framework for DocRE, where we design a sentence importance score and a sentence focusing loss.
Experimental results on two domains show that our SIEF not only improves overall performance, but also makes DocRE models more robust.
arXiv Detail & Related papers (2022-04-27T03:20:07Z) - Document-level Relation Extraction with Context Guided Mention
Integration and Inter-pair Reasoning [18.374097786748834]
Document-level Relation Extraction (DRE) aims to recognize the relations between two entities.
Few previous studies have investigated the mention integration, which may be problematic.
We propose two novel techniques, Context Guided Mention Integration and Inter-pair Reasoning.
arXiv Detail & Related papers (2022-01-13T08:00:23Z) - Eider: Evidence-enhanced Document-level Relation Extraction [56.71004595444816]
Document-level relation extraction (DocRE) aims at extracting semantic relations among entity pairs in a document.
We propose a three-stage evidence-enhanced DocRE framework consisting of joint relation and evidence extraction, evidence-centered relation extraction (RE), and fusion of extraction results.
arXiv Detail & Related papers (2021-06-16T09:43:16Z) - Mention-centered Graph Neural Network for Document-level Relation
Extraction [2.724649366608364]
We build cross-sentence dependencies by inferring compositional relations between inter-sentence mentions.
Experiments show the connections between different mentions are crucial to document-level relation extraction.
arXiv Detail & Related papers (2021-03-15T08:19:44Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.