論文の概要: NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative
Trading
- arxiv url: http://arxiv.org/abs/2310.00747v2
- Date: Tue, 31 Oct 2023 11:32:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 01:37:14.495146
- Title: NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative
Trading
- Title(参考訳): NoxTrader:LSTMに基づく量的トレーディングのためのストックリターンモーメント予測
- Authors: Hsiang-Hui Liu, Han-Jay Shu, Wei-Ning Chiu
- Abstract要約: NoxTraderはポートフォリオの構築と取引実行のために設計された洗練されたシステムである。
NoxTraderの基本的な学習プロセスは、歴史的取引データから得られた貴重な洞察の同化に根ざしている。
厳密な特徴工学と予測対象の選択により,0.65から0.75の範囲の顕著な相関範囲で予測データを生成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce NoxTrader, a sophisticated system designed for portfolio
construction and trading execution with the primary objective of achieving
profitable outcomes in the stock market, specifically aiming to generate
moderate to long-term profits. The underlying learning process of NoxTrader is
rooted in the assimilation of valuable insights derived from historical trading
data, particularly focusing on time-series analysis due to the nature of the
dataset employed. In our approach, we utilize price and volume data of US stock
market for feature engineering to generate effective features, including Return
Momentum, Week Price Momentum, and Month Price Momentum. We choose the Long
Short-Term Memory (LSTM)model to capture continuous price trends and implement
dynamic model updates during the trading execution process, enabling the model
to continuously adapt to the current market trends. Notably, we have developed
a comprehensive trading backtesting system - NoxTrader, which allows us to
manage portfolios based on predictive scores and utilize custom evaluation
metrics to conduct a thorough assessment of our trading performance. Our
rigorous feature engineering and careful selection of prediction targets enable
us to generate prediction data with an impressive correlation range between
0.65 and 0.75. Finally, we monitor the dispersion of our prediction data and
perform a comparative analysis against actual market data. Through the use of
filtering techniques, we improved the initial -60% investment return to 325%.
- Abstract(参考訳): noxtraderは、ポートフォリオ構築と取引実行のために設計された洗練されたシステムで、株式市場で利益を上げることを主な目的とし、特に中長期の利益を産出することを目的としています。
noxtraderの基本的な学習プロセスは、歴史的取引データから得られた貴重な洞察の同化であり、特にデータセットの性質から時系列分析に焦点を当てている。
当社のアプローチでは,米国株式市場の価格とボリュームデータを機能工学に活用し,リターンモーメント,週価格モーメント,月価格モーメントなどの効果的な機能を生み出す。
我々は、長期記憶モデルを選択して、継続的な価格トレンドを捉え、取引実行プロセス中に動的モデル更新を実装し、現在の市場動向に継続的に適応できるようにします。
特に、予測スコアに基づいてポートフォリオを管理し、カスタム評価指標を利用して取引実績の徹底的な評価を行うことができる包括的取引バックテストシステム、NoxTraderを開発した。
厳密な特徴工学と予測対象の選択により,0.65~0.75の範囲で予測データを生成することができる。
最後に,予測データの分散を監視し,実際の市場データとの比較分析を行う。
フィルタリング技術を用いることで,最初の60%の投資リターンを325%に改善した。
関連論文リスト
- Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) は、Contrastive Predictive Coding (CPC) に根ざした自己教師型学習手法である。
我々の研究は、株価データの複雑さを深く掘り下げ、さまざまなモデルが、時間と異なるセクターで急速に変化する収益データの関連性をどのように扱うかを評価している。
CETのCPCに関する基盤は、財務データ時代においても、一貫した株価予測を促進する、微妙な理解を可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:09:59Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock
Movement and Volatility Prediction [20.574163667057476]
我々は、株式市場予測の精度を高めるために、世論の豊かな情報源であるソーシャルメディアデータの力を活用している。
我々は、感情分析、マクロ経済指標、検索エンジンデータ、過去の価格をマルチアテンション深層学習モデルに組み込むアプローチを開拓した。
市場の動向とボラティリティの予測のために,私たちによって特別にキュレーションされたデータセットを用いて,提案モデルの最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-28T13:31:39Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - DNN-ForwardTesting: A New Trading Strategy Validation using Statistical
Timeseries Analysis and Deep Neural Networks [0.6882042556551609]
我々はDNN-forwardtestingと呼ばれる新しいトレーディング戦略を提案し、ディープニューラルネットワークによって予測される将来についてテストすることで適用戦略を決定する。
我々の取引システムは、DNNの予測に適用することで最も効果的な技術指標を計算し、そのような指標を使って取引を誘導する。
論文 参考訳(メタデータ) (2022-10-20T19:00:59Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
長期記憶ネットワーク(LSTM)ネットワーク上に構築した深層学習に基づく回帰モデルを提案する。
特定の開始日と終了日について、株式のティッカー名に基づいて過去の株価を抽出し、将来の株価を予測する。
インド株式市場の15の重要セクターから選ばれた75の重要銘柄にモデルを配置する。
論文 参考訳(メタデータ) (2021-04-06T11:09:51Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - A Deep Learning Framework for Predicting Digital Asset Price Movement
from Trade-by-trade Data [20.392440676633573]
本稿では,取引単位のデータから暗号通貨の価格変動を予測する枠組みを提案する。
このモデルは、1年近いトレードバイトレーダデータで高いパフォーマンスを達成するために訓練されている。
現実的な取引シミュレーション環境では、モデルによる予測は簡単に収益化できる。
論文 参考訳(メタデータ) (2020-10-11T10:42:02Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。