Topological, or Non-topological? A Deep Learning Based Prediction
- URL: http://arxiv.org/abs/2310.18907v1
- Date: Sun, 29 Oct 2023 05:29:49 GMT
- Title: Topological, or Non-topological? A Deep Learning Based Prediction
- Authors: Ashiqur Rasul, Md Shafayat Hossain, Ankan Ghosh Dastider, Himaddri
Roy, M. Zahid Hasan, Quazi D. M. Khosru
- Abstract summary: Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research.
A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations.
In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology and graph neural network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Prediction and discovery of new materials with desired properties are at the
forefront of quantum science and technology research. A major bottleneck in
this field is the computational resources and time complexity related to
finding new materials from ab initio calculations. In this work, an effective
and robust deep learning-based model is proposed by incorporating persistent
homology and graph neural network which offers an accuracy of 91.4% and an F1
score of 88.5% in classifying topological vs. non-topological materials,
outperforming the other state-of-the-art classifier models. The incorporation
of the graph neural network encodes the underlying relation between the atoms
into the model based on their own crystalline structures and thus proved to be
an effective method to represent and process non-euclidean data like molecules
with a relatively shallow network. The persistent homology pipeline in the
suggested neural network is capable of integrating the atom-specific
topological information into the deep learning model, increasing robustness,
and gain in performance. It is believed that the presented work will be an
efficacious tool for predicting the topological class and therefore enable the
high-throughput search for novel materials in this field.
Related papers
- KA-GNN: Kolmogorov-Arnold Graph Neural Networks for Molecular Property Prediction [16.53371673077183]
This paper presents a novel graph neural network model-the Kolmogorov-Arnold Network (KAN)-based Graph Neural Network (KA-GNN)
The model maintains the high interpretability characteristic of KAN methods while being extremely efficient in computational resource usage.
Tested and validated on seven public datasets, KA-GNN has shown significant improvements in property predictions over the existing state-of-the-art (SOTA) benchmarks.
arXiv Detail & Related papers (2024-10-15T06:44:57Z) - Discovering Physics-Informed Neural Networks Model for Solving Partial Differential Equations through Evolutionary Computation [5.8407437499182935]
This article proposes an evolutionary computation method aimed at discovering the PINNs model with higher approximation accuracy and faster convergence rate.
In experiments, the performance of different models that are searched through Bayesian optimization, random search and evolution is compared in solving Klein-Gordon, Burgers, and Lam'e equations.
arXiv Detail & Related papers (2024-05-18T07:32:02Z) - Symmetry-enforcing neural networks with applications to constitutive modeling [0.0]
We show how to combine state-of-the-art micromechanical modeling and advanced machine learning techniques to homogenize complex microstructures exhibiting non-linear and history dependent behaviors.
The resulting homogenized model, termed smart law (SCL), enables the adoption of microly informed laws into finite element solvers at a fraction of the computational cost required by traditional concurrent multiscale approaches.
In this work, the capabilities of SCLs are expanded via the introduction of a novel methodology that enforces material symmetries at the neuron level.
arXiv Detail & Related papers (2023-12-21T01:12:44Z) - A Kernel-Based Neural Network Test for High-dimensional Sequencing Data
Analysis [0.8221435109014762]
We introduce a new kernel-based neural network (KNN) test for complex association analysis of sequencing data.
Based on KNN, a Wald-type test is then introduced to evaluate the joint association of high-dimensional genetic data with a disease phenotype of interest.
arXiv Detail & Related papers (2023-12-05T16:06:23Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Hyperbolic Neural Networks++ [66.16106727715061]
We generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincar'e ball model.
Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.
arXiv Detail & Related papers (2020-06-15T08:23:20Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.