論文の概要: Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks
- arxiv url: http://arxiv.org/abs/2310.18924v2
- Date: Thu, 6 Jun 2024 12:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-08 00:29:50.123549
- Title: Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks
- Title(参考訳): 時空間多モードアテンションネットワークを用いたリチウムイオン電池の寿命予測
- Authors: Sungho Suh, Dhruv Aditya Mittal, Hymalai Bello, Bo Zhou, Mayank Shekhar Jha, Paul Lukowicz,
- Abstract要約: リチウムイオン電池は、電気自動車や再生可能エネルギー貯蔵など様々な用途で広く使われている。
電池の残存寿命(RUL)の予測は信頼性と効率の確保に不可欠である。
本稿では, 時空間アテンションネットワーク(ST-MAN)を用いたリチウムイオン電池の2段階RUL予測手法を提案する。
- 参考スコア(独自算出の注目度): 4.249657064343807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage. The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation, as well as reducing maintenance costs. However, determining the life cycle of batteries in real-world scenarios is challenging, and existing methods have limitations in predicting the number of cycles iteratively. In addition, existing works often oversimplify the datasets, neglecting important features of the batteries such as temperature, internal resistance, and material type. To address these limitations, this paper proposes a two-stage RUL prediction scheme for Lithium-ion batteries using a spatio-temporal multimodal attention network (ST-MAN). The proposed ST-MAN is to capture the complex spatio-temporal dependencies in the battery data, including the features that are often neglected in existing works. Despite operating without prior knowledge of end-of-life (EOL) events, our method consistently achieves lower error rates, boasting mean absolute error (MAE) and mean square error (MSE) of 0.0275 and 0.0014, respectively, compared to existing convolutional neural networks (CNN) and long short-term memory (LSTM)-based methods. The proposed method has the potential to improve the reliability and efficiency of battery operations and is applicable in various industries.
- Abstract(参考訳): リチウムイオン電池は、電気自動車や再生可能エネルギー貯蔵など様々な用途で広く使われている。
電池の持続寿命(RUL)の予測は、信頼性と効率の確保、メンテナンスコストの削減に不可欠である。
しかし, 現実シナリオにおける電池のライフサイクル決定は困難であり, 既存手法ではサイクル数を反復的に予測する限界がある。
加えて、既存の研究はしばしばデータセットを単純化し、温度、内部抵抗、材料タイプといったバッテリーの重要な特徴を無視している。
本稿では, 時空間マルチモーダルアテンションネットワーク(ST-MAN)を用いたリチウムイオン電池の2段階RUL予測手法を提案する。
提案したST-MANは、既存の作業でしばしば無視される機能を含む、バッテリデータ内の複雑な時空間的依存関係をキャプチャする。
従来の畳み込みニューラルネットワーク (CNN) と長短期記憶 (LSTM) に基づく手法と比較して, 平均絶対誤差 (MAE) と平均二乗誤差 (MSE) は0.0275 と 0.0014 である。
提案手法は,バッテリ操作の信頼性と効率性を向上する可能性があり,各種産業に適用可能である。
関連論文リスト
- Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
バッテリー性能と「使い勝手」を設計・使用の機能として理解することが最重要事項である。
健康記述子の28個のバッテリ状態を予測するために, ディープ・トランスフォーマー・ネットワーク経由で, その方向への第一歩を提示する。
論文 参考訳(メタデータ) (2023-09-18T15:04:40Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) と Remaining Useful Life (RUL) は、バッテリーシステムの予測保守、信頼性、寿命の向上に貢献している。
本稿では,鉛蓄電池のSoHとRULを推定するための機械学習手法における最先端のマッピング研究について述べる。
論文 参考訳(メタデータ) (2023-07-11T10:41:41Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
本稿では,リチウムイオン電池の寿命を推定するための既存手法について概説する。
リチウムイオン電池の寿命を正確に予測するための機械学習技術に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T15:35:31Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
IoT(Internet of Things)環境は、多数のIoT対応センシングデバイスを介して監視される。
この問題を緩和するため、センサーは比較的低いサンプリング周波数で動作するように設定されることが多い。
これは、予測などの後続の意思決定を劇的に妨げる可能性がある。
論文 参考訳(メタデータ) (2022-06-15T19:46:59Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
深層ニューラルネットワークを用いた時系列バッテリデータ拡張手法を提案する。
あるモデルはバッテリ充電プロファイルを生成し、別のモデルはバッテリ放電プロファイルを生成する。
その結果,バッテリーデータに制限がある場合の問題点を解消するために,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-10-05T16:17:19Z) - Working Memory Connections for LSTM [51.742526187978726]
ワーキングメモリ接続は,様々なタスクにおけるLSTMの性能を常に向上することを示す。
数値的な結果は、細胞状態がゲート構造に含まれる価値のある情報を含んでいることを示唆している。
論文 参考訳(メタデータ) (2021-08-31T18:01:30Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Simple statistical models and sequential deep learning for Lithium-ion
batteries degradation under dynamic conditions: Fractional Polynomials vs
Neural Networks [1.8899300124593648]
リチウム イオン電池の長寿そして安全は電池の作動条件の有効な監視そして調節によって促進されます。
バッテリー管理システム上の状態の健康(SoH)監視のための迅速かつ正確なアルゴリズムを実装することが重要です。
本稿では,長期記憶ニューラルネットワークと多変量多項回帰の2つのデータ駆動手法を提案し,比較する。
論文 参考訳(メタデータ) (2021-02-16T12:26:23Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
本稿では,UAVの切断時間,ハンドオーバ速度,エネルギー消費を低減するため,MAB(Multi-armed bandit)アルゴリズムを提案する。
それぞれの性能指標(PI)が、適切な学習パラメータの範囲を採用することにより、どのように改善されるかを示す。
論文 参考訳(メタデータ) (2020-09-21T12:35:23Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。