論文の概要: Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
- arxiv url: http://arxiv.org/abs/2503.13558v5
- Date: Sat, 26 Apr 2025 17:39:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 18:43:11.251939
- Title: Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
- Title(参考訳): 機械学習を用いたリチウムイオン電池の寿命予測
- Authors: Jingyuan Xue, Longfei Wei, Fang Sheng, Jianfei Zhang,
- Abstract要約: 本研究では、生存データ再構成、生存モデル学習、生存確率推定を統合したハイブリッド生存分析フレームワークを提案する。
提案手法は, 電池電圧時系列を経路シグネチャを用いた時間から障害データに変換する。
トヨタのバッテリとNASAのバッテリデータセットを用いて行った実験は,我々のアプローチの有効性を実証した。
- 参考スコア(独自算出の注目度): 1.2603104712715607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Battery degradation significantly impacts the reliability and efficiency of energy storage systems, particularly in electric vehicles and industrial applications. Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for optimizing maintenance schedules, reducing costs, and improving safety. Traditional RUL prediction methods often struggle with nonlinear degradation patterns and uncertainty quantification. To address these challenges, we propose a hybrid survival analysis framework integrating survival data reconstruction, survival model learning, and survival probability estimation. Our approach transforms battery voltage time series into time-to-failure data using path signatures. The multiple Cox-based survival models and machine-learning-based methods, such as DeepHit and MTLR, are learned to predict battery failure-free probabilities over time. Experiments conducted on the Toyota battery and NASA battery datasets demonstrate the effectiveness of our approach, achieving high time-dependent AUC and concordance index (C-Index) while maintaining a low integrated Brier score. The data and source codes for this work are available to the public at https://github.com/thinkxca/rul.
- Abstract(参考訳): バッテリーの劣化は、特に電気自動車や工業用途において、エネルギー貯蔵システムの信頼性と効率に大きな影響を及ぼす。
リチウムイオン電池の余寿命(RUL)を予測することは、メンテナンススケジュールの最適化、コスト削減、安全性の向上に不可欠である。
従来のRUL予測法は、非線形劣化パターンと不確かさの定量化にしばしば苦労する。
これらの課題に対処するために、生存データ再構成、生存モデル学習、生存確率推定を統合したハイブリッドサバイバル分析フレームワークを提案する。
提案手法は, 電池電圧時系列を経路シグネチャを用いた時間から障害データに変換する。
複数の Cox ベースのサバイバルモデルと,DeepHit や MTLR といった機械学習ベースの手法が,時間とともにバッテリ障害のない確率を予測するために学習される。
トヨタのバッテリとNASAのバッテリデータセットを用いて行った実験は,高時間依存型AUCとコンコーダンス指標(C-Index)を実現し,低統合Brierスコアを維持しながら,我々のアプローチの有効性を実証した。
この作業のデータとソースコードはhttps://github.com/thinkxca/rul.comで公開されている。
関連論文リスト
- BACE-RUL: A Bi-directional Adversarial Network with Covariate Encoding for Machine Remaining Useful Life Prediction [35.78166369270404]
本稿では,RUL予測のための双方向適応・健康管理(PHM)フレームワークを提案する。
提案モデルは一般的なフレームワークであり、最先端の手法より優れている。
ターボファン航空機エンジンのデータセットを含む実世界のいくつかのデータセットの実験は、提案モデルが一般的なフレームワークであり、最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2025-03-14T08:56:40Z) - DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence [21.867940190460704]
リチウムイオン電池の残留実用寿命(RUL)は、安全性を確保し、メンテナンスコストを低減し、使用を最適化するために不可欠である。
本研究では,NASAのPrognostics Center of Excellenceのデータセットに適用した,特徴工学とDLinearに基づく正確なRUL予測手法を提案する。
論文 参考訳(メタデータ) (2025-01-20T15:28:20Z) - Remaining Useful Life Prediction for Batteries Utilizing an Explainable AI Approach with a Predictive Application for Decision-Making [0.0]
バッテリーRULを予測・分類するための機械学習モデルを開発した。
提案したTLEモデルはRMSE, MAE, R二乗誤差のベースラインモデルより一貫して優れている。
XGBoostは、クロスバリデーション技術によって検証された99%の分類精度を達成した。
論文 参考訳(メタデータ) (2024-09-26T15:08:38Z) - Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
本稿では、バッテリパラメータ間で独立した依存性グラフ構造を組み込むことを共同で学習するバッテリグラフネットワークフレームワークを提案する。
提案手法は,市販のバッテリデータセットにおいて,いくつかの一般的な手法よりも優れた性能を示し,SOTA性能を実現する。
論文 参考訳(メタデータ) (2024-08-14T15:44:56Z) - Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks [4.249657064343807]
リチウムイオン電池は、電気自動車や再生可能エネルギー貯蔵など様々な用途で広く使われている。
電池の残存寿命(RUL)の予測は信頼性と効率の確保に不可欠である。
本稿では, 時空間アテンションネットワーク(ST-MAN)を用いたリチウムイオン電池の2段階RUL予測手法を提案する。
論文 参考訳(メタデータ) (2023-10-29T07:32:32Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Fast Machine Unlearning Without Retraining Through Selective Synaptic
Dampening [51.34904967046097]
Selective Synaptic Dampening (SSD)は高速で、訓練データの長期保存を必要としない。
高速で性能が高く,トレーニングデータの長期保存を必要としない,新しい2段階のポストホック,リトレーニングフリーなマシンアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-15T11:30:45Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) と Remaining Useful Life (RUL) は、バッテリーシステムの予測保守、信頼性、寿命の向上に貢献している。
本稿では,鉛蓄電池のSoHとRULを推定するための機械学習手法における最先端のマッピング研究について述べる。
論文 参考訳(メタデータ) (2023-07-11T10:41:41Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
本稿では,リチウムイオン電池の寿命を推定するための既存手法について概説する。
リチウムイオン電池の寿命を正確に予測するための機械学習技術に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T15:35:31Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
リチウムイオン電池(LIB)は今後数十年で電化を促進する鍵となる。
LIB劣化の不十分な理解は、バッテリーの耐久性と安全性を制限する重要なボトルネックである。
本稿では,オンライン診断とバッテリー劣化の診断のためのハイブリッド物理とデータ駆動モデリングを提案する。
論文 参考訳(メタデータ) (2021-10-25T11:14:12Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
深層ニューラルネットワークを用いた時系列バッテリデータ拡張手法を提案する。
あるモデルはバッテリ充電プロファイルを生成し、別のモデルはバッテリ放電プロファイルを生成する。
その結果,バッテリーデータに制限がある場合の問題点を解消するために,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-10-05T16:17:19Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
本稿では,UAVの切断時間,ハンドオーバ速度,エネルギー消費を低減するため,MAB(Multi-armed bandit)アルゴリズムを提案する。
それぞれの性能指標(PI)が、適切な学習パラメータの範囲を採用することにより、どのように改善されるかを示す。
論文 参考訳(メタデータ) (2020-09-21T12:35:23Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。