論文の概要: Kernel-based Joint Multiple Graph Learning and Clustering of Graph
Signals
- arxiv url: http://arxiv.org/abs/2310.19005v2
- Date: Tue, 7 Nov 2023 11:12:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 22:07:58.729227
- Title: Kernel-based Joint Multiple Graph Learning and Clustering of Graph
Signals
- Title(参考訳): カーネルを用いた複数グラフ学習とグラフ信号のクラスタリング
- Authors: Mohamad H. Alizade, Aref Einizade, and Jhony H. Giraldo
- Abstract要約: 本稿では, Kernel-based Joint Multiple GL and clustering of graph signal applicationを紹介する。
実験により、KMGLは、特に高騒音レベルのシナリオにおいて、GLクラスタリングの堅牢性を大幅に向上することが示された。
これらの知見は,様々な実世界のアプリケーションにおいて,グラフ信号処理法の性能向上のためのKMGLの可能性を明らかにするものである。
- 参考スコア(独自算出の注目度): 2.4305626489408465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within the context of Graph Signal Processing (GSP), Graph Learning (GL) is
concerned with the inference of the graph's underlying structure from nodal
observations. However, real-world data often contains diverse information,
necessitating the simultaneous clustering and learning of multiple graphs. In
practical applications, valuable node-specific covariates, represented as
kernels, have been underutilized by existing graph signal clustering methods.
In this letter, we propose a new framework, named Kernel-based joint Multiple
GL and clustering of graph signals (KMGL), that leverages a multi-convex
optimization approach. This allows us to integrate node-side information,
construct low-pass filters, and efficiently solve the optimization problem. The
experiments demonstrate that KMGL significantly enhances the robustness of GL
and clustering, particularly in scenarios with high noise levels and a
substantial number of clusters. These findings underscore the potential of KMGL
for improving the performance of GSP methods in diverse, real-world
applications.
- Abstract(参考訳): グラフ信号処理(gsp)の文脈において、グラフ学習(gl)は、nodal観測からグラフの基盤構造を推論することに関するものである。
しかし、実世界のデータはしばしば多様な情報を含み、複数のグラフの同時クラスタリングと学習を必要とする。
実用的な用途では、ノード固有の共変量(カーネルとして表される)は、既存のグラフ信号クラスタリング法によって過小評価されている。
本稿では,マルチ凸最適化手法を応用した,カーネルベースジョイントマルチプルglとグラフ信号クラスタリング(kmgl)という新しいフレームワークを提案する。
これによりノード側情報を統合し、低域フィルタを構築し、最適化問題を効率的に解くことができる。
実験により、KMGLは、特に高いノイズレベルとかなりの数のクラスタを持つシナリオにおいて、GLとクラスタリングの堅牢性を大幅に向上することが示された。
これらの知見は,多様な実世界のアプリケーションにおいて,GSP法の性能を向上させるKMGLの可能性を明らかにするものである。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
本稿では,グラフニューラルネットワークを用いてモジュラリティの目的を最適化し,グラフサイズと線形にスケールする新しい手法DGClusterを提案する。
私たちはDGClusterを、さまざまなサイズの実世界のデータセットで、複数の一般的なクラスタ品質メトリクスで広範囲にテストしています。
われわれの手法は最先端の手法よりも一貫して優れており、ほぼすべての設定で顕著な性能向上を示している。
論文 参考訳(メタデータ) (2023-12-20T01:43:55Z) - Robust Graph Structure Learning with the Alignment of Features and
Adjacency Matrix [8.711977569042865]
クリーンなグラフ構造とそれに対応する表現を共同で学習するグラフ構造学習(GSL)には,多くのアプローチが提案されている。
本稿では,特に特徴情報とグラフ情報の整合性を考慮した新しい正規化GSL手法を提案する。
本手法の有効性を評価するために,実世界のグラフを用いて実験を行った。
論文 参考訳(メタデータ) (2023-07-05T09:05:14Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
本稿では,グラフレベルのクラスタリングの問題について検討する。
GLCC(Graph-Level Contrastive Clustering)というグラフレベルの一般的なクラスタリングフレームワークを提案する。
様々なよく知られたデータセットに対する実験は、競合するベースラインよりも提案したGLCCの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T11:08:10Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
マルチビューサブスペースクラスタリング(FGL-MSC)のためのきめ細かいグラフ学習フレームワークを提案する。
主な課題は、クラスタリングタスクに適合する学習グラフを生成しながら、微細な融合重みを最適化する方法である。
8つの実世界のデータセットの実験では、提案されたフレームワークは最先端の手法に匹敵する性能を示している。
論文 参考訳(メタデータ) (2022-01-12T18:00:29Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
グラフニューラルネットワーク(GNN)は多くのグラフ解析タスクにおいて最先端の結果を得た。
グラフクラスタリングのようなグラフ上の教師なしの問題は、GNNの進歩に対してより抵抗性があることが証明されている。
本稿では,クラスタリング品質のモジュラリティ尺度にインスパイアされた教師なしプール手法であるDeep Modularity Networks (DMoN)を紹介する。
論文 参考訳(メタデータ) (2020-06-30T15:30:49Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
グラフ構造とグラフ埋め込みを協調的かつ反復的に学習するための、エンドツーエンドのグラフ学習フレームワーク、すなわち、IDGL(Iterative Deep Graph Learning)を提案する。
実験の結果,提案したIDGLモデルは,最先端のベースラインを一貫して上回る,あるいは一致させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-21T19:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。