論文の概要: Prediction of Locally Stationary Data Using Expert Advice
- arxiv url: http://arxiv.org/abs/2310.19591v1
- Date: Mon, 30 Oct 2023 14:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 19:41:18.107262
- Title: Prediction of Locally Stationary Data Using Expert Advice
- Title(参考訳): エキスパートアドバイザを用いた局所定常データの予測
- Authors: Vladimir V'yugin, Vladimir Trunov
- Abstract要約: 継続的機械学習の課題について考察する。
データフローを生成するソースの性質に関する仮定は使用されない。
局所定常時系列のオンライン予測アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of continuous machine learning is studied. Within the framework
of the game-theoretic approach, when for calculating the next forecast, no
assumptions about the stochastic nature of the source that generates the data
flow are used -- the source can be analog, algorithmic or probabilistic, its
parameters can change at random times, when building a prognostic model, only
structural assumptions are used about the nature of data generation. An online
forecasting algorithm for a locally stationary time series is presented. An
estimate of the efficiency of the proposed algorithm is obtained.
- Abstract(参考訳): 継続的機械学習の問題は研究されている。
ゲーム理論のアプローチの枠組みでは、次の予測を計算する際には、データフローを生成するソースの確率的性質に関する仮定は使用されない -- ソースはアナログ、アルゴリズム、確率的であり、そのパラメータは確率モデルを構築する際にランダムに変化する可能性がある。
局所定常時系列のオンライン予測アルゴリズムを提案する。
提案アルゴリズムの効率を推定する。
関連論文リスト
- Structured Prediction in Online Learning [66.36004256710824]
オンライン学習環境における構造化予測のための理論的・アルゴリズム的枠組みについて検討する。
このアルゴリズムは教師付き学習環境からの最適アルゴリズムの一般化であることを示す。
本稿では,非定常データ分布,特に逆データを含む2番目のアルゴリズムについて考察する。
論文 参考訳(メタデータ) (2024-06-18T07:45:02Z) - Deep Non-Parametric Time Series Forecaster [19.800783133682955]
提案手法は, 予測分布のパラメトリック形式を仮定せず, 学習可能な戦略に従って実験分布からサンプリングして予測を生成する。
提案手法のグローバルバージョンを開発し,複数の時系列にまたがる情報を活用することで,サンプリング戦略を自動的に学習する。
論文 参考訳(メタデータ) (2023-12-22T12:46:30Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Mixed moving average field guided learning for spatio-temporal data [0.0]
我々は,新しいベイズ時間埋め込みと理論誘導型機械学習アプローチを定義し,アンサンブル予測を行う。
リプシッツ予測器を用いて、バッチ学習環境における固定時間および任意の時間PACを決定する。
次に、線形予測器とOrnstein-Uhlenbeckプロセスからシミュレーションしたデータセットを用いて学習手法の性能を検証した。
論文 参考訳(メタデータ) (2023-01-02T16:11:05Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
本稿では,ベイズ状態空間モデルの隠れ状態を推定するための高速アルゴリズムを提案する。
事前トレーニングの後、データセットの後方分布を見つけるには、100分の1秒から10分の1秒かかる。
論文 参考訳(メタデータ) (2022-10-13T16:37:05Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Remaining Useful Life Estimation Under Uncertainty with Causal GraphNets [0.0]
時系列モデルの構築とトレーニングのための新しいアプローチを提案する。
提案手法は,非定常時系列の予測モデル構築に適している。
論文 参考訳(メタデータ) (2020-11-23T21:28:03Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。