A Bayesian Methodology for Estimation for Sparse Canonical Correlation
- URL: http://arxiv.org/abs/2310.19621v1
- Date: Mon, 30 Oct 2023 15:14:25 GMT
- Title: A Bayesian Methodology for Estimation for Sparse Canonical Correlation
- Authors: Siddhesh Kulkarni, Subhadip Pal, Jeremy T. Gaskins
- Abstract summary: Canonical Correlation Analysis (CCA) is a statistical procedure for identifying relationships between data sets.
ScSCCA is a rapidly emerging methodological area that aims for robust modeling of the interrelations between the different data modalities.
We propose a novel ScSCCA approach where we employ a Bayesian infinite factor model and aim to achieve robust estimation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It can be challenging to perform an integrative statistical analysis of
multi-view high-dimensional data acquired from different experiments on each
subject who participated in a joint study. Canonical Correlation Analysis (CCA)
is a statistical procedure for identifying relationships between such data
sets. In that context, Structured Sparse CCA (ScSCCA) is a rapidly emerging
methodological area that aims for robust modeling of the interrelations between
the different data modalities by assuming the corresponding CCA directional
vectors to be sparse. Although it is a rapidly growing area of statistical
methodology development, there is a need for developing related methodologies
in the Bayesian paradigm. In this manuscript, we propose a novel ScSCCA
approach where we employ a Bayesian infinite factor model and aim to achieve
robust estimation by encouraging sparsity in two different levels of the
modeling framework. Firstly, we utilize a multiplicative Half-Cauchy process
prior to encourage sparsity at the level of the latent variable loading
matrices. Additionally, we promote further sparsity in the covariance matrix by
using graphical horseshoe prior or diagonal structure. We conduct multiple
simulations to compare the performance of the proposed method with that of
other frequently used CCA procedures, and we apply the developed procedures to
analyze multi-omics data arising from a breast cancer study.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
We present a novel hierarchical federated learning algorithm that incorporates quantization for communication-efficiency.
We offer a comprehensive analytical framework to evaluate its optimality gap and convergence rate.
Our findings reveal that our algorithm consistently achieves high learning accuracy over a range of parameters.
arXiv Detail & Related papers (2024-03-03T15:40:24Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
We introduce the Cramer-Wold distance regularization, which can be computed in a closed-form, to facilitate joint distributional learning for high-dimensional datasets.
We also introduce a two-step learning method to enable flexible prior modeling and improve the alignment between the aggregated posterior and the prior distribution.
arXiv Detail & Related papers (2023-10-25T05:24:23Z) - Functional Generalized Canonical Correlation Analysis for studying
multiple longitudinal variables [0.9208007322096533]
Functional Generalized Canonical Correlation Analysis (FGCCA) is a new framework for exploring associations between multiple random processes observed jointly.
We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components.
We present a use case on a longitudinal dataset and evaluate the method's efficiency in simulation studies.
arXiv Detail & Related papers (2023-10-11T09:21:31Z) - DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse
Additive Models with Feature Division and Decorrelation [16.232378903482143]
We propose a new distributed statistical learning algorithm, DDAC-SpAM, which divides the features under a high-dimensional sparse additive model.
The effectiveness and efficiency of the proposed algorithm are demonstrated through theoretical analysis and empirical results on both synthetic and real data.
Our approach provides a practical solution for fitting sparse additive models, with promising applications in a wide range of domains.
arXiv Detail & Related papers (2022-05-16T18:31:03Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Multi-modality fusion using canonical correlation analysis methods:
Application in breast cancer survival prediction from histology and genomics [16.537929113715432]
We study the use of canonical correlation analysis (CCA) and penalized variants of CCA for the fusion of two modalities.
We analytically show that, with known model parameters, posterior mean estimators that jointly use both modalities outperform arbitrary linear mixing of single modality posterior estimators in latent variable prediction.
arXiv Detail & Related papers (2021-11-27T21:18:01Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Learning Gaussian Graphical Models with Latent Confounders [74.72998362041088]
We compare and contrast two strategies for inference in graphical models with latent confounders.
While these two approaches have similar goals, they are motivated by different assumptions about confounding.
We propose a new method, which combines the strengths of these two approaches.
arXiv Detail & Related papers (2021-05-14T00:53:03Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.