論文の概要: A Historical Context for Data Streams
- arxiv url: http://arxiv.org/abs/2310.19811v1
- Date: Wed, 18 Oct 2023 08:52:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-05 13:26:13.921038
- Title: A Historical Context for Data Streams
- Title(参考訳): データストリームの歴史的文脈
- Authors: Indre Zliobaite and Jesse Read
- Abstract要約: ストリーミングデータからの学習に関する研究は、典型的には計算資源の制約に関連した厳密な仮定を下す。
ここでは、データストリーム研究の歴史的文脈について、その歴史的文脈におけるデータストリームよりも機械学習で使用される一般的な仮定を概説する。
- 参考スコア(独自算出の注目度): 2.2476339862695065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning from data streams is an active and growing research area.
Research on learning from streaming data typically makes strict assumptions
linked to computational resource constraints, including requirements for stream
mining algorithms to inspect each instance not more than once and be ready to
give a prediction at any time. Here we review the historical context of data
streams research placing the common assumptions used in machine learning over
data streams in their historical context.
- Abstract(参考訳): データストリームからの機械学習は、活発に成長している研究領域である。
ストリーミングデータから学習する研究は、通常、ストリームマイニングアルゴリズムが各インスタンスを1回未満で検査し、いつでも予測する準備が整うという要求を含む、計算資源の制約と関連づけられた厳密な仮定を作る。
本稿では、データストリーム研究の歴史的文脈を、その歴史的文脈におけるデータストリーム上で機械学習で使用される一般的な仮定として検討する。
関連論文リスト
- An Algorithm for Streaming Differentially Private Data [7.726042106665366]
我々は、特に空間データセットに対して計算された、微分プライベートな合成ストリーミングデータ生成のためのアルゴリズムを導出する。
本アルゴリズムの有効性は実世界とシミュレーションデータセットの両方で検証される。
論文 参考訳(メタデータ) (2024-01-26T00:32:31Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - On the challenges to learn from Natural Data Streams [6.602973237811197]
実世界のコンテキストでは、時にデータはNatural Data Streamsの形で利用することができる。
このデータ組織は、従来の機械学習アルゴリズムとディープラーニングアルゴリズムの両方にとって興味深い、かつ難しいシナリオである。
本稿では,自然データストリームの学習入力として受信する各種アルゴリズムの分類性能について検討する。
論文 参考訳(メタデータ) (2023-01-09T16:32:02Z) - Learning from Data Streams: An Overview and Update [1.5076964620370268]
教師付きデータストリーム学習の基本的定義と設定を再構築する。
教師付きデータストリーム学習タスクを構成するものについて、新たに検討する。
データストリームから学ぶことは、シングルパスやオンライン学習のアプローチを強制しない、という点が主な重点です。
論文 参考訳(メタデータ) (2022-12-30T14:01:41Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
本稿では,交通事故における傷害の重大性を予測するために,機械学習アルゴリズムの性能を評価する新しいデータセットを提案する。
データセットは、英国運輸省から公開されているデータセットを集約することで作成される。
論文 参考訳(メタデータ) (2022-05-20T21:15:26Z) - Using Time-Series Privileged Information for Provably Efficient Learning
of Prediction Models [6.7015527471908625]
本研究では,学習中に特権情報を利用する教師付きモデルを用いて,今後の成果を予測する。
特権情報は、予測の基準時間と将来の結果の間に観察される時系列のサンプルを含む。
我々のアプローチは、特にデータが不足している場合に、古典的な学習よりも好まれることを示す。
論文 参考訳(メタデータ) (2021-10-28T10:07:29Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Data Stream Clustering: A Review [0.0]
クラスタリングはリアルタイムデータストリーム処理に最も適した手法の1つである。
我々は、最近のデータストリームクラスタリングアルゴリズムをレビューし、ベースクラスタリング手法、計算複雑性、クラスタリング精度の観点から分析する。
一般的なデータストリームレポジトリとデータセット、ストリーム処理ツール、プラットフォームを示します。
論文 参考訳(メタデータ) (2020-07-16T20:35:09Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
我々は、トレーニングされたネットワークの将来の学習タスクのために、利用可能なデータの豊富さと関連するデータの欠如の間のギャップを埋める。
利用可能なデータは、元のトレーニングデータセットまたは関連するドメインデータセットの不均衡なサブセットである可能性があるため、代表サンプルを検索するために使用します。
関連ドメインからのデータを活用して最先端のパフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2019-12-27T02:05:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。