Intell-dragonfly: A Cybersecurity Attack Surface Generation Engine Based On Artificial Intelligence-generated Content Technology
- URL: http://arxiv.org/abs/2311.00240v1
- Date: Wed, 1 Nov 2023 02:46:02 GMT
- Title: Intell-dragonfly: A Cybersecurity Attack Surface Generation Engine Based On Artificial Intelligence-generated Content Technology
- Authors: Xingchen Wu, Qin Qiu, Jiaqi Li, Yang Zhao,
- Abstract summary: This study proposes Intell-dragonfly, a cyber security attack surface generation engine based on artificial intelligence generation technology.
Based on ChatGPT technology, this paper designs an automated attack surface generation process, which can generate diversified and personalized attack scenarios.
The experimental results show that the ChatGPT-based method has significant advantages in the accuracy, diversity and operability of attack surface generation.
- Score: 8.246783059859887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of the Internet, cyber security issues have become increasingly prominent. Traditional cyber security defense methods are limited in the face of ever-changing threats, so it is critical to seek innovative attack surface generation methods. This study proposes Intell-dragonfly, a cyber security attack surface generation engine based on artificial intelligence generation technology, to meet the challenges of cyber security. Based on ChatGPT technology, this paper designs an automated attack surface generation process, which can generate diversified and personalized attack scenarios, targets, elements and schemes. Through experiments in a real network environment, the effect of the engine is verified and compared with traditional methods, which improves the authenticity and applicability of the attack surface. The experimental results show that the ChatGPT-based method has significant advantages in the accuracy, diversity and operability of attack surface generation. Furthermore, we explore the strengths and limitations of the engine and discuss its potential applications in the field of cyber security. This research provides a novel approach to the field of cyber security that is expected to have a positive impact on defense and prevention of cyberthreats.
Related papers
- Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
We introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics.
The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats.
It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems.
arXiv Detail & Related papers (2024-12-09T07:07:17Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.
We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.
Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
arXiv Detail & Related papers (2024-12-05T08:56:38Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
This paper sheds light on the vulnerabilities of state-of-the-art face anti-spoofing methods against digital attacks.
It presents a comprehensive taxonomy of common threats encountered in face anti-spoofing systems.
arXiv Detail & Related papers (2024-06-06T02:05:35Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
Cyber resilience provides a new security paradigm that complements inadequate protection with resilience mechanisms.
A Cyber-Resilient Mechanism ( CRM) adapts to the known or zero-day threats and uncertainties in real-time.
We review the literature on RL for cyber resiliency and discuss the cyber-resilient defenses against three major types of vulnerabilities.
arXiv Detail & Related papers (2021-07-02T01:08:45Z) - Machine Learning in Generation, Detection, and Mitigation of
Cyberattacks in Smart Grid: A Survey [1.3299946892361474]
Smart grid (SG) is a complex cyber-physical system that utilizes modern cyber and physical equipment to run at an optimal operating point.
Cyberattacks are the principal threats confronting the usage and advancement of the state-of-the-art systems.
Machine learning (ML) is being used to exploit and defend the cyberattacks in SG by the attackers and system operators.
arXiv Detail & Related papers (2020-09-01T05:16:51Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.