Fixation-based Self-calibration for Eye Tracking in VR Headsets
- URL: http://arxiv.org/abs/2311.00391v2
- Date: Tue, 23 Apr 2024 03:31:23 GMT
- Title: Fixation-based Self-calibration for Eye Tracking in VR Headsets
- Authors: Ryusei Uramune, Sei Ikeda, Hiroki Ishizuka, Osamu Oshiro,
- Abstract summary: The proposed method is based on the assumptions that the user's viewpoint can freely move.
fixations are first detected from the time-series data of uncalibrated gaze directions.
The calibration parameters are optimized by minimizing the sum of a dispersion metrics of the PoRs.
- Score: 0.21561701531034413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a novel self-calibration method for eye tracking in a virtual reality (VR) headset. The proposed method is based on the assumptions that the user's viewpoint can freely move and that the points of regard (PoRs) from different viewpoints are distributed within a small area on an object surface during visual fixation. In the method, fixations are first detected from the time-series data of uncalibrated gaze directions using an extension of the I-VDT (velocity and dispersion threshold identification) algorithm to a three-dimensional (3D) scene. Then, the calibration parameters are optimized by minimizing the sum of a dispersion metrics of the PoRs. The proposed method can potentially identify the optimal calibration parameters representing the user-dependent offset from the optical axis to the visual axis without explicit user calibration, image processing, or marker-substitute objects. For the gaze data of 18 participants walking in two VR environments with many occlusions, the proposed method achieved an accuracy of 2.1$^\circ$, which was significantly lower than the average offset. Our method is the first self-calibration method with an average error lower than 3$^\circ$ in 3D environments. Further, the accuracy of the proposed method can be improved by up to 1.2$^\circ$ by refining the fixation detection or optimization algorithm.
Related papers
- P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship [1.6921147361216515]
We propose a novel target-less calibration approach based on the 2D-3D edge point extraction using the occlusion relationship in 3D space.
Our method achieves low error and high robustness that can contribute to the practical applications relying on high-quality Camera-LiDAR calibration.
arXiv Detail & Related papers (2023-11-04T14:32:55Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
This paper proposes a fine-grained self-localization method for outdoor robotics.
The proposed method addresses limitations in existing cross-view localization methods.
It is the first sparse visual-only method that enhances perception in dynamic environments.
arXiv Detail & Related papers (2023-08-16T02:51:52Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning [23.200130129530653]
Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion.
We propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment.
arXiv Detail & Related papers (2021-11-30T01:35:04Z) - SemCal: Semantic LiDAR-Camera Calibration using Neural MutualInformation
Estimator [7.478076599395811]
SemCal is an automatic, targetless, extrinsic calibration algorithm for a LiDAR and camera system using semantic information.
We leverage a neural information estimator to estimate the mutual information (MI) of semantic information extracted from each sensor measurement.
arXiv Detail & Related papers (2021-09-21T15:51:24Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Online Initialization and Extrinsic Spatial-Temporal Calibration for
Monocular Visual-Inertial Odometry [19.955414423860788]
This paper presents an online method for bootstrapping the optimization-based monocular visual-inertial odometry (VIO)
The method can online calibrate the relative transformation (spatial) and time offsets (temporal) among camera and IMU, as well as estimate the initial values of metric scale, velocity, gravity, gyroscope bias, and accelerometer bias.
Experimental results on public datasets show that the initial values and the parameters, as well as the sensor poses, can be accurately estimated by the proposed method.
arXiv Detail & Related papers (2020-04-12T03:13:08Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z) - A Two-step Calibration Method for Unfocused Light Field Camera Based on
Projection Model Analysis [8.959346460518226]
The proposed method is able to reuse traditional camera calibration methods for the direction parameter set.
The accuracy and robustness of the proposed method outperforms its counterparts under various benchmark criteria.
arXiv Detail & Related papers (2020-01-11T10:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.