Improving Interpersonal Communication by Simulating Audiences with
Language Models
- URL: http://arxiv.org/abs/2311.00687v2
- Date: Fri, 3 Nov 2023 13:17:55 GMT
- Title: Improving Interpersonal Communication by Simulating Audiences with
Language Models
- Authors: Ryan Liu and Howard Yen and Raja Marjieh and Thomas L. Griffiths and
Ranjay Krishna
- Abstract summary: We propose the Explore-Simulate-Simulate (EGS) framework, which takes as input any scenario where an individual is communicating to an audience with a goal they want to achieve.
EGS produces a diverse set of advice relevant to the scenario, generates communication candidates conditioned on subsets of the advice, and simulates the reactions from various audiences to determine both the best candidate and advice to use.
We show that EGS enhances the effectiveness and outcomes of goal-oriented communication across a variety of situations.
- Score: 20.056253963100463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How do we communicate with others to achieve our goals? We use our prior
experience or advice from others, or construct a candidate utterance by
predicting how it will be received. However, our experiences are limited and
biased, and reasoning about potential outcomes can be difficult and cognitively
challenging. In this paper, we explore how we can leverage Large Language Model
(LLM) simulations to help us communicate better. We propose the
Explore-Generate-Simulate (EGS) framework, which takes as input any scenario
where an individual is communicating to an audience with a goal they want to
achieve. EGS (1) explores the solution space by producing a diverse set of
advice relevant to the scenario, (2) generates communication candidates
conditioned on subsets of the advice, and (3) simulates the reactions from
various audiences to determine both the best candidate and advice to use. We
evaluate the framework on eight scenarios spanning the ten fundamental
processes of interpersonal communication. For each scenario, we collect a
dataset of human evaluations across candidates and baselines, and showcase that
our framework's chosen candidate is preferred over popular generation
mechanisms including Chain-of-Thought. We also find that audience simulations
achieve reasonably high agreement with human raters across 5 of the 8
scenarios. Finally, we demonstrate the generality of our framework by applying
it to real-world scenarios described by users on web forums. Through
evaluations and demonstrations, we show that EGS enhances the effectiveness and
outcomes of goal-oriented communication across a variety of situations, thus
opening up new possibilities for the application of large language models in
revolutionizing communication and decision-making processes.
Related papers
- Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models [70.180385882195]
This paper introduces a personality-aware user simulation for Conversational Recommender Systems (CRSs)
The user agent induces customizable personality traits and preferences, while the system agent possesses the persuasion capability to simulate realistic interaction in CRSs.
Experimental results demonstrate that state-of-the-art LLMs can effectively generate diverse user responses aligned with specified personality traits.
arXiv Detail & Related papers (2025-04-09T13:21:17Z) - Towards Anthropomorphic Conversational AI Part I: A Practical Framework [49.62013440962072]
We introduce a multi- module framework designed to replicate the key aspects of human intelligence involved in conversations.
In the second stage of our approach, these conversational data, after filtering and labeling, can serve as training and testing data for reinforcement learning.
arXiv Detail & Related papers (2025-02-28T03:18:39Z) - Training a Generally Curious Agent [86.84089201249104]
We present PAPRIKA, a fine-tuning approach that enables language models to develop general decision-making capabilities.
Experimental results show that models fine-tuned with PAPRIKA can effectively transfer their learned decision-making capabilities to entirely unseen tasks.
These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems.
arXiv Detail & Related papers (2025-02-24T18:56:58Z) - ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents [70.17229548653852]
We introduce ElectionSim, an innovative election simulation framework based on large language models.
We present a million-level voter pool sampled from social media platforms to support accurate individual simulation.
We also introduce PPE, a poll-based presidential election benchmark to assess the performance of our framework under the U.S. presidential election scenario.
arXiv Detail & Related papers (2024-10-28T05:25:50Z) - Evaluating Large Language Models as Generative User Simulators for Conversational Recommendation [20.171574438536673]
We introduce a new protocol to measure the degree to which language models can accurately emulate human behavior in conversational recommendation.
We demonstrate these tasks effectively reveal deviations of language models from human behavior, and offer insights on how to reduce the deviations with model selection and prompting strategies.
arXiv Detail & Related papers (2024-03-13T18:16:21Z) - Decision-Oriented Dialogue for Human-AI Collaboration [62.367222979251444]
We describe a class of tasks called decision-oriented dialogues, in which AI assistants such as large language models (LMs) must collaborate with one or more humans via natural language to help them make complex decisions.
We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends.
For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach.
arXiv Detail & Related papers (2023-05-31T17:50:02Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs)
In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol.
We propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators.
arXiv Detail & Related papers (2023-05-22T15:12:43Z) - Human Choice Prediction in Language-based Persuasion Games:
Simulation-based Off-Policy Evaluation [24.05034588588407]
This paper addresses a key aspect in the design of such agents: Predicting human decision in off-policy evaluation.
We collected a dataset of 87K decisions from humans playing a repeated decision-making game with artificial agents.
Our approach involves training a model on human interactions with one agents subset to predict decisions when interacting with another.
arXiv Detail & Related papers (2023-05-17T16:38:11Z) - An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction [27.10815774845461]
We propose a novel scoring method, which characterizes generalization of models trained on source crowd scenarios and applied to target crowd scenarios.
The Interaction component aims to characterize the difficulty of scenario domains, while the diversity of a scenario domain is captured in the Diversity score.
Our experimental results validate the efficacy of the proposed method on several simulated and real-world (source,target) generalization tasks.
arXiv Detail & Related papers (2022-11-02T01:39:30Z) - Towards a Progression-Aware Autonomous Dialogue Agent [14.09591070450606]
We propose a framework in which dialogue agents can evaluate the progression of a conversation toward or away from desired outcomes.
Our framework is composed of three key elements: (1) the notion of a "global" dialogue state (GDS), (2) a task-specific progression function (PF) computed in terms of a conversation's trajectory through this space, and (3) a planning mechanism based on dialogue rollouts by which an agent may use progression signals to select its next response.
arXiv Detail & Related papers (2022-05-07T17:37:43Z) - Conversational Recommendation: Theoretical Model and Complexity Analysis [6.084774669743511]
We present a theoretical, domain-independent model of conversational recommendation.
We show that finding an efficient conversational strategy is NP-hard.
We also show that catalog characteristics can strongly influence the efficiency of individual conversational strategies.
arXiv Detail & Related papers (2021-11-10T09:05:52Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z) - SPA: Verbal Interactions between Agents and Avatars in Shared Virtual
Environments using Propositional Planning [61.335252950832256]
Sense-Plan-Ask, or SPA, generates plausible verbal interactions between virtual human-like agents and user avatars in shared virtual environments.
We find that our algorithm creates a small runtime cost and enables agents to complete their goals more effectively than agents without the ability to leverage natural-language communication.
arXiv Detail & Related papers (2020-02-08T23:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.