論文の概要: Deep Learning for real-time neural decoding of grasp
- arxiv url: http://arxiv.org/abs/2311.01061v1
- Date: Thu, 2 Nov 2023 08:26:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 14:14:22.128227
- Title: Deep Learning for real-time neural decoding of grasp
- Title(参考訳): 把持のリアルタイムニューラルデコードのための深層学習
- Authors: Paolo Viviani and Ilaria Gesmundo and Elios Ghinato and Andres
Agudelo-Toro and Chiara Vercellino and Giacomo Vitali and Letizia Bergamasco
and Alberto Scionti and Marco Ghislieri and Valentina Agostini and Olivier
Terzo and Hansj\"org Scherberger
- Abstract要約: 本稿では,ニューラルネットワークの復号化のためのDeep Learningに基づく手法を提案する。
提案手法の主な目的は、これまでの神経科学知識に頼ることなく、最先端の復号精度を改善することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural decoding involves correlating signals acquired from the brain to
variables in the physical world like limb movement or robot control in Brain
Machine Interfaces. In this context, this work starts from a specific
pre-existing dataset of neural recordings from monkey motor cortex and presents
a Deep Learning-based approach to the decoding of neural signals for grasp type
classification. Specifically, we propose here an approach that exploits LSTM
networks to classify time series containing neural data (i.e., spike trains)
into classes representing the object being grasped. The main goal of the
presented approach is to improve over state-of-the-art decoding accuracy
without relying on any prior neuroscience knowledge, and leveraging only the
capability of deep learning models to extract correlations from data. The paper
presents the results achieved for the considered dataset and compares them with
previous works on the same dataset, showing a significant improvement in
classification accuracy, even if considering simulated real-time decoding.
- Abstract(参考訳): ニューラルデコーディングは、脳機械インタフェースにおいて、脳から取得した信号を手足の動きやロボット制御などの物理的世界の変数に関連付ける。
この文脈では、本研究はサルの運動野からの神経記録の特定の既設データセットから始まり、把持型分類のための神経信号のデコードに対するディープラーニングに基づくアプローチを示す。
具体的には、LSTMネットワークを利用して、ニューラルネットワーク(スパイクトレイン)を含む時系列を、つかむ対象を表すクラスに分類する手法を提案する。
提案手法の主な目的は、従来の神経科学知識に頼ることなく、最先端の復号精度を向上し、データから相関関係を抽出する深層学習モデルの能力のみを活用することである。
本論文は,検討したデータセットについて得られた結果を同一データセット上の先行研究と比較し,実時間復号をシミュレートした場合でも,分類精度が著しく向上することを示す。
関連論文リスト
- The Brain's Bitter Lesson: Scaling Speech Decoding With Self-Supervised Learning [3.649801602551928]
我々は、異種録音からの学習を表現するために、神経科学にインスパイアされた自己教師対象のセットをニューラルネットワークとともに開発する。
その結果、これらの目的によって学習された表現は、データとともにスケールし、主題、データセット、タスクをまたいで一般化し、同等の自己監督的アプローチを上回ります。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - Bayesian Time-Series Classifier for Decoding Simple Visual Stimuli from
Intracranial Neural Activity [0.0]
本稿では,ハイレベルな解釈性を維持しつつ,課題に対処する簡易なベイズ時系列分類器(BTsC)モデルを提案する。
視覚的タスクにおける色をデコードするためにニューラルネットワークを利用することで、このアプローチの分類能力を実証する。
提案手法は,様々なタスクで記録されたニューラルデータに適用可能である。
論文 参考訳(メタデータ) (2023-07-28T17:04:06Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
ディープニューラルネットワークのトレーニングに使用されるエラーアルゴリズムのバックプロパゲーションは、ディープラーニングの成功に不可欠である。
最近の研究は、このアイデアを、局所的な計算だけでニューラルネットワークを訓練できる汎用アルゴリズムへと発展させた。
等価ディープニューラルネットワークに対する予測符号化ネットワークの柔軟性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-02-18T22:57:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Deep Cross-Subject Mapping of Neural Activity [33.25686697879346]
本研究では、ある被験者の神経活動信号に基づいて訓練されたニューラルデコーダを用いて、異なる被験者の運動意図を強固に復号できることを示す。
本稿では,クロスオブジェクト脳-コンピュータ開発に向けた重要なステップとして,本研究で報告した知見について述べる。
論文 参考訳(メタデータ) (2020-07-13T14:35:02Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。