論文の概要: Add and Thin: Diffusion for Temporal Point Processes
- arxiv url: http://arxiv.org/abs/2311.01139v1
- Date: Thu, 2 Nov 2023 10:42:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 14:03:09.876738
- Title: Add and Thin: Diffusion for Temporal Point Processes
- Title(参考訳): Add and Thin: 一時点過程の拡散
- Authors: David L\"udke, Marin Bilo\v{s}, Oleksandr Shchur, Marten Lienen,
Stephan G\"unnemann
- Abstract要約: ADD-THINは、時間点過程(TPP)ネットワークの確率的デノナイジング拡散モデルである。
イベントシーケンス全体で動作し、密度推定において最先端のTPPモデルと一致する。
合成および実世界のデータセットの実験において、我々のモデルは密度推定における最先端のTPPモデルと一致し、予測においてそれらを強く上回る。
- 参考スコア(独自算出の注目度): 24.4686728569167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoregressive neural networks within the temporal point process (TPP)
framework have become the standard for modeling continuous-time event data.
Even though these models can expressively capture event sequences in a
one-step-ahead fashion, they are inherently limited for long-term forecasting
applications due to the accumulation of errors caused by their sequential
nature. To overcome these limitations, we derive ADD-THIN, a principled
probabilistic denoising diffusion model for TPPs that operates on entire event
sequences. Unlike existing diffusion approaches, ADD-THIN naturally handles
data with discrete and continuous components. In experiments on synthetic and
real-world datasets, our model matches the state-of-the-art TPP models in
density estimation and strongly outperforms them in forecasting.
- Abstract(参考訳): 時間的ポイントプロセス(TPP)フレームワーク内の自己回帰ニューラルネットワークは、継続的イベントデータのモデリングの標準となっている。
これらのモデルは1段階の方法でイベントシーケンスを表現的にキャプチャできるが、そのシーケンシャルな性質によるエラーの蓄積により、本質的には長期予測アプリケーションに限られる。
これらの制約を克服するために、イベントシーケンス全体で動作するTPPの原理的確率分解拡散モデルであるADD-THINを導出する。
既存の拡散アプローチとは異なり、ADD-THINは離散的かつ連続的なコンポーネントでデータを自然に処理する。
合成および実世界のデータセットの実験において、我々のモデルは密度推定における最先端のTPPモデルと一致し、予測においてそれらを強く上回る。
関連論文リスト
- EventFlow: Forecasting Continuous-Time Event Data with Flow Matching [12.976042923229466]
本研究では,時間的ポイントプロセスのための非自己回帰生成モデルであるEventFlowを提案する。
我々のモデルはフローマッチングフレームワークの上に構築され、イベント時間を通じて関節分布を直接学習し、自己回帰プロセスをサイドステッピングします。
論文 参考訳(メタデータ) (2024-10-09T20:57:00Z) - MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process [26.661721555671626]
本稿では,最先端の予測性能を実現する新しい多粒度時系列(MG-TSD)モデルを提案する。
われわれのアプローチは外部データに頼らず、様々な領域にまたがって汎用的で適用可能である。
論文 参考訳(メタデータ) (2024-03-09T01:15:03Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Interacting Diffusion Processes for Event Sequence Forecasting [20.380620709345898]
拡散生成モデルを組み込んだ新しい手法を提案する。
このモデルはシーケンス・ツー・シーケンスの予測を容易にし、過去のイベント・シーケンスに基づいた複数ステップの予測を可能にする。
提案手法は,TPPの長期予測において,最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-26T22:17:25Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
時系列の非条件学習拡散モデルであるTSDiffを提案する。
提案する自己誘導機構により、補助的ネットワークやトレーニング手順の変更を必要とせず、推論中に下流タスクに対してTSDiffを条件付けることができる。
本研究では,予測,改良,合成データ生成という3つの時系列タスクにおいて,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-21T10:56:36Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。