Joint 3D Shape and Motion Estimation from Rolling Shutter Light-Field
Images
- URL: http://arxiv.org/abs/2311.01292v1
- Date: Thu, 2 Nov 2023 15:08:18 GMT
- Title: Joint 3D Shape and Motion Estimation from Rolling Shutter Light-Field
Images
- Authors: Hermes McGriff, Renato Martins, Nicolas Andreff and C\'edric
Demonceaux
- Abstract summary: We propose an approach to address the problem of 3D reconstruction of scenes from a single image captured by a light-field camera equipped with a rolling shutter sensor.
Our method leverages the 3D information cues present in the light-field and the motion information provided by the rolling shutter effect.
We present a generic model for the imaging process of this sensor and a two-stage algorithm that minimizes the re-projection error.
- Score: 2.0277446818410994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an approach to address the problem of 3D
reconstruction of scenes from a single image captured by a light-field camera
equipped with a rolling shutter sensor. Our method leverages the 3D information
cues present in the light-field and the motion information provided by the
rolling shutter effect. We present a generic model for the imaging process of
this sensor and a two-stage algorithm that minimizes the re-projection error
while considering the position and motion of the camera in a motion-shape
bundle adjustment estimation strategy. Thereby, we provide an instantaneous 3D
shape-and-pose-and-velocity sensing paradigm. To the best of our knowledge,
this is the first study to leverage this type of sensor for this purpose. We
also present a new benchmark dataset composed of different light-fields showing
rolling shutter effects, which can be used as a common base to improve the
evaluation and tracking the progress in the field. We demonstrate the
effectiveness and advantages of our approach through several experiments
conducted for different scenes and types of motions. The source code and
dataset are publicly available at: https://github.com/ICB-Vision-AI/RSLF
Related papers
- Towards 3D Vision with Low-Cost Single-Photon Cameras [24.711165102559438]
We present a method for reconstructing 3D shape of arbitrary Lambertian objects based on measurements by miniature, energy-efficient, low-cost single-photon cameras.
Our work draws a connection between image-based modeling and active range scanning and is a step towards 3D vision with single-photon cameras.
arXiv Detail & Related papers (2024-03-26T15:40:05Z) - Detecting Moving Objects Using a Novel Optical-Flow-Based
Range-Independent Invariant [0.0]
We present an optical-flow-based transformation that yields a consistent 2D invariant image output regardless of time instants, range of points in 3D, and the speed of the camera.
In the new domain, projections of 3D points that deviate from the values of the predefined lookup image can be clearly identified as moving relative to the stationary 3D environment.
arXiv Detail & Related papers (2023-10-14T17:42:19Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses
via Pixel-Aligned Scene Flow [26.528667940013598]
Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning.
Key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion.
We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass.
arXiv Detail & Related papers (2023-05-31T20:58:46Z) - Event-aided Direct Sparse Odometry [54.602311491827805]
We introduce EDS, a direct monocular visual odometry using events and frames.
Our algorithm leverages the event generation model to track the camera motion in the blind time between frames.
EDS is the first method to perform 6-DOF VO using events and frames with a direct approach.
arXiv Detail & Related papers (2022-04-15T20:40:29Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
We propose a method for jointly estimating the 3D motion, 3D shape, and appearance of highly motion-blurred objects from a video.
Experiments on benchmark datasets demonstrate that our method outperforms previous methods for fast moving object deblurring and 3D reconstruction.
arXiv Detail & Related papers (2021-11-29T11:25:14Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
We show how to train a neural model that can perform accurate 3D pose and camera estimation.
Our method outperforms both classical bundle adjustment and weakly-supervised monocular 3D baselines.
arXiv Detail & Related papers (2021-08-10T18:39:56Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z) - Synergetic Reconstruction from 2D Pose and 3D Motion for Wide-Space
Multi-Person Video Motion Capture in the Wild [3.0015034534260665]
We propose a markerless motion capture method with accuracy and smoothness from multiple cameras.
The proposed method predicts each persons 3D pose and determines bounding box of multi-camera images.
We evaluated the proposed method using various datasets and a real sports field.
arXiv Detail & Related papers (2020-01-16T02:14:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.