Dense Scene Reconstruction from Light-Field Images Affected by Rolling Shutter
- URL: http://arxiv.org/abs/2412.03518v1
- Date: Wed, 04 Dec 2024 17:59:04 GMT
- Title: Dense Scene Reconstruction from Light-Field Images Affected by Rolling Shutter
- Authors: Hermes McGriff, Renato Martins, Nicolas Andreff, Cedric Demonceaux,
- Abstract summary: We present a two-stage method based on a 2D Gaussians Splatting that allows for a render and compare" strategy with a point cloud formulation.
In the first stage, a subset of sub-aperture images is used to estimate an RS 3D shape that is related to the scene target shape up to a motion"
In the second stage, the agnostic of the 3D shape is computed by estimating an admissible camera motion.
- Score: 1.856181262236876
- License:
- Abstract: This paper presents a dense depth estimation approach from light-field (LF) images that is able to compensate for strong rolling shutter (RS) effects. Our method estimates RS compensated views and dense RS compensated disparity maps. We present a two-stage method based on a 2D Gaussians Splatting that allows for a ``render and compare" strategy with a point cloud formulation. In the first stage, a subset of sub-aperture images is used to estimate an RS agnostic 3D shape that is related to the scene target shape ``up to a motion". In the second stage, the deformation of the 3D shape is computed by estimating an admissible camera motion. We demonstrate the effectiveness and advantages of this approach through several experiments conducted for different scenes and types of motions. Due to lack of suitable datasets for evaluation, we also present a new carefully designed synthetic dataset of RS LF images. The source code, trained models and dataset will be made publicly available at: https://github.com/ICB-Vision-AI/DenseRSLF
Related papers
- No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Towards Human-Level 3D Relative Pose Estimation: Generalizable, Training-Free, with Single Reference [62.99706119370521]
Humans can easily deduce the relative pose of an unseen object, without label/training, given only a single query-reference image pair.
We propose a novel 3D generalizable relative pose estimation method by elaborating (i) with a 2.5D shape from an RGB-D reference, (ii) with an off-the-shelf differentiable, and (iii) with semantic cues from a pretrained model like DINOv2.
arXiv Detail & Related papers (2024-06-26T16:01:10Z) - DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - Joint 3D Shape and Motion Estimation from Rolling Shutter Light-Field
Images [2.0277446818410994]
We propose an approach to address the problem of 3D reconstruction of scenes from a single image captured by a light-field camera equipped with a rolling shutter sensor.
Our method leverages the 3D information cues present in the light-field and the motion information provided by the rolling shutter effect.
We present a generic model for the imaging process of this sensor and a two-stage algorithm that minimizes the re-projection error.
arXiv Detail & Related papers (2023-11-02T15:08:18Z) - Differentiable Rendering for Pose Estimation in Proximity Operations [4.282159812965446]
Differentiable rendering aims to compute the derivative of the image rendering function with respect to the rendering parameters.
This paper presents a novel algorithm for 6-DoF pose estimation using a differentiable rendering pipeline.
arXiv Detail & Related papers (2022-12-24T06:12:16Z) - Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning [23.200130129530653]
Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion.
We propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment.
arXiv Detail & Related papers (2021-11-30T01:35:04Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z) - Indoor Layout Estimation by 2D LiDAR and Camera Fusion [3.2387553628943535]
This paper presents an algorithm for indoor layout estimation and reconstruction through the fusion of a sequence of captured images and LiDAR data sets.
In the proposed system, a movable platform collects both intensity images and 2D LiDAR information.
arXiv Detail & Related papers (2020-01-15T16:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.