論文の概要: Detecting Out-of-Distribution Through the Lens of Neural Collapse
- arxiv url: http://arxiv.org/abs/2311.01479v2
- Date: Tue, 7 Nov 2023 01:40:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 22:09:41.903033
- Title: Detecting Out-of-Distribution Through the Lens of Neural Collapse
- Title(参考訳): 神経崩壊のレンズによるアウトオブディストリビューションの検出
- Authors: Litian Liu, Yao Qin
- Abstract要約: アウト・オブ・ディストリビューション(OOD)検出は、AIの安全なデプロイに不可欠である。
我々は、Neural Collapse inspired OOD detector (NC-OOD)と呼ばれる高度に多用途なOOD検出器を導入する。
我々は、OODの特徴が遠くにあるのに対して、ID(In-distriion)特徴がクラスタを形成する傾向にあるという一般的な観察を拡張した。
- 参考スコア(独自算出の注目度): 8.324938763661295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) detection is essential for the safe deployment of
AI. Particularly, OOD detectors should generalize effectively across diverse
scenarios. To improve upon the generalizability of existing OOD detectors, we
introduce a highly versatile OOD detector, called Neural Collapse inspired OOD
detector (NC-OOD). We extend the prevalent observation that in-distribution
(ID) features tend to form clusters, whereas OOD features are far away.
Particularly, based on the recent observation, Neural Collapse, we further
demonstrate that ID features tend to cluster in proximity to weight vectors.
From our extended observation, we propose to detect OOD based on feature
proximity to weight vectors. To further rule out OOD samples, we leverage the
observation that OOD features tend to reside closer to the origin than ID
features. Extensive experiments show that our approach enhances the
generalizability of existing work and can consistently achieve state-of-the-art
OOD detection performance across a wide range of OOD Benchmarks over different
classification tasks, training losses, and model architectures.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)検出は、AIの安全なデプロイに不可欠である。
特に、OOD検出器は様々なシナリオで効果的に一般化されるべきである。
既存のOOD検出器の一般化性を改善するために,Neural Collapse inspired OOD detector (NC-OOD) と呼ばれる多機能なOOD検出器を導入する。
我々は、OOD特徴が遠くにあるのに対して、ID特徴がクラスターを形成する傾向にあるという一般的な観察を拡張した。
特に、最近のニューラル・コラプス(Neural Collapse)の観測から、ID特徴が重みベクトルに近接する傾向にあることを示す。
拡張観測から,重みベクトルに近接する特徴量に基づいてOODを検出することを提案する。
さらにOODのサンプルを除外するために、OODの特徴がIDの特徴よりも起源に近い傾向にあるという観察を活用する。
大規模な実験により,本手法は既存の作業の一般化可能性を高め,様々な分類タスク,トレーニング損失,モデルアーキテクチャに対して,幅広いOODベンチマークの最先端OOD検出性能を一貫して達成できることが示されている。
関連論文リスト
- Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity [2.206582444513284]
トレーニングとOODサンプルの両方において,分類器の信頼性を評価するためのOODリスク指標を提案する。
パラメータ数がサンプル数に等しい場合,OODリスクは無限のピークを示す。
論文 参考訳(メタデータ) (2024-11-04T15:39:12Z) - Dimensionality-induced information loss of outliers in deep neural networks [29.15751143793406]
ディープニューラルネットワーク(DNN)を用いたシステムにおいて、アウト・オブ・ディストリビューション(OOD)検出は重要な問題である
複数の視点から特徴表現の層依存性を調べることにより,この問題を実験的に解明する。
特徴量と重みのアライメントに基づく次元認識型OOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-10-29T01:52:46Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
本稿では,入力分子と再構成グラフの類似性を比較する補助拡散モデルに基づくフレームワークを用いてOOD分子を検出することを提案する。
IDトレーニングサンプルの再構成に向けた生成バイアスのため、OOD分子の類似度スコアは検出を容易にするためにはるかに低い。
本研究は,PGR-MOOD(PGR-MOOD)とよばれる分子OOD検出のためのプロトタイプグラフ再構成のアプローチを開拓し,3つのイノベーションを生かした。
論文 参考訳(メタデータ) (2024-04-24T03:25:53Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
大きな言語モデル(LLM)は豊富な世界の知識をエンコードし、クラスごとに記述的な特徴を生成するよう促すことができる。
本稿では,LLMの選択的生成によるOOD検出性能向上のための世界知識の適用を提案する。
論文 参考訳(メタデータ) (2023-10-12T04:14:28Z) - NECO: NEural Collapse Based Out-of-distribution detection [2.4958897155282282]
OOD検出のための新しいポストホック法NECOを紹介する。
実験の結果,NECOは小型・大規模OOD検出タスクの両方を達成できた。
OOD検出における本手法の有効性を理論的に説明する。
論文 参考訳(メタデータ) (2023-10-10T17:53:36Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。