Using random coherent states to mimic quantum illumination
- URL: http://arxiv.org/abs/2311.02016v1
- Date: Fri, 3 Nov 2023 16:22:17 GMT
- Title: Using random coherent states to mimic quantum illumination
- Authors: Thomas Brougham, Nigam Samantaray and John Jeffers
- Abstract summary: Quantum illumination uses quantum correlations to enhance the detection of an object in the presence of background noise.
We present a protocol that mimics the behaviour of quantum illumination, but does not use correlated or entangled modes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum illumination uses quantum correlations to enhance the detection of an
object in the presence of background noise. This advantage has been shown to
exist even if one uses non-optimal direct measurements on the two correlated
modes. Here we present a protocol that mimics the behaviour of quantum
illumination, but does not use correlated or entangled modes. Instead, the
protocol uses coherent (or phase-randomized coherent) pulses with randomly
chosen intensities. The intensities are drawn from a distribution such that the
average state looks thermal. Under appropriate conditions, the mimic protocol
can perform similarly to quantum illumination schemes that use direct
measurements. This holds even for a reflectance as low as $10^{-7}$. We also
present an analytic condition which allows one to determine the sets of
parameters in which each protocol works best.
Related papers
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Geometry of sequential quantum correlations and robust randomness
certification [0.0]
We study the geometry of quantum correlations and their implications for robust device-independent randomness generation.
We identify a boundary for the set of these correlations expressed as a trade-off between the amount of nonlocality between different observers.
We propose a practical protocol based on non-projective measurements that can produce the boundary correlations under ideal conditions.
arXiv Detail & Related papers (2023-09-21T17:50:29Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - Quantum illumination with noisy probes: Conditional advantages of non-Gaussianity [0.9999629695552195]
Entangled states, like the two-mode squeezed vacuum state, are known to give quantum advantage in the illumination protocol.
We use non-Gaussian photon-added and -subtracted states, affected by local Gaussian noise on top of the omnipresent thermal noise, as probes in the illumination protocol.
arXiv Detail & Related papers (2021-07-06T17:37:45Z) - Classical benchmarking for microwave quantum illumination [0.0]
Quantum illumination (QI) theoretically promises up to a 6dB error-exponent advantage in target detection over the best classical protocol.
In this work we outline what is the true classical benchmark for microwave QI using coherent states.
arXiv Detail & Related papers (2021-05-10T17:25:00Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Gaussian State-Based Quantum Illumination with Simple Photodetection [13.250854610190078]
We show that quantum illumination is better for object detection compared with coherent states of the same mean photon number.
The advantage persists if signal energy and object reflectivity are low and background thermal noise is high.
arXiv Detail & Related papers (2020-11-27T14:45:29Z) - Bi-frequency illumination: a quantum-enhanced protocol [0.0]
Quantum-enhanced, idler-free sensing protocol to measure the response of a target object to the frequency of a probe is proposed.
This work opens the way to applications in both radar and medical imaging, in particular in the microwave domain.
arXiv Detail & Related papers (2020-10-28T17:21:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.