Bi-frequency illumination: a quantum-enhanced protocol
- URL: http://arxiv.org/abs/2010.15097v3
- Date: Sun, 13 Nov 2022 12:29:36 GMT
- Title: Bi-frequency illumination: a quantum-enhanced protocol
- Authors: Mateo Casariego, Yasser Omar, and Mikel Sanz
- Abstract summary: Quantum-enhanced, idler-free sensing protocol to measure the response of a target object to the frequency of a probe is proposed.
This work opens the way to applications in both radar and medical imaging, in particular in the microwave domain.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Quantum-enhanced, idler-free sensing protocol to measure the response of a
target object to the frequency of a probe in a noisy and lossy scenario is
proposed. In this protocol, a target with frequency-dependent reflectivity
embedded in a thermal bath is considered. The aim is to estimate the parameter
$\lambda = \eta(\omega_2)-\eta(\omega_1)$, since it contains relevant
information for different problems. For this, a bi-frequency quantum state is
employed as the resource, since it is necessary to capture the relevant
information about the parameter. Computing the quantum Fisher information $H$
relative to the parameter $\lambda$ in an assumed neighborhood of $\lambda \sim
0$ for a two-mode squeezed state ($H_Q$), and a coherent state ($H_C$), a
quantum enhancement is shown in the estimation of $\lambda$. This quantum
enhancement grows with the mean reflectivity of the probed object, and is
noise-resilient. Explicit formulas are derived for the optimal observables, and
an experimental scheme based on elementary quantum optical transformations is
proposed. Furthermore, this work opens the way to applications in both radar
and medical imaging, in particular in the microwave domain.
Related papers
- On the sample complexity of purity and inner product estimation [8.94496959777308]
We study the sample complexity of the tasks quantum purity estimation and quantum inner product estimation.
In purity estimation, we are to estimate $tr(rho2)$ of an unknown quantum state $rho$ to additive error $epsilon$.
For quantum inner product estimation, Alice and Bob are to estimate $tr(rhosigma)$ to additive error $epsilon$ given copies of unknown quantum state $rho$ and $sigma$.
arXiv Detail & Related papers (2024-10-16T16:17:21Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Quantum Metrology of Absorption and Gain Parameters using Two-Mode Bright Squeezed Light [2.7855886538423182]
Quantum probes, specifically the squeezed states, have proved very successful.
We focus on improving the sensitivity of the estimation of the photon loss coefficient of a weakly absorbing medium.
We present two measurement schemes: balanced photodetection and time-reversed metrology.
arXiv Detail & Related papers (2024-04-01T02:48:36Z) - Measuring the Loschmidt amplitude for finite-energy properties of the
Fermi-Hubbard model on an ion-trap quantum computer [27.84599956781646]
We study the operation of a quantum-classical time-series algorithm on a present-day quantum computer.
Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a $16$-site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device.
We numerically analyze the influence of noise on the full operation of the quantum-classical algorithm by measuring expectation values of local observables at finite energies.
arXiv Detail & Related papers (2023-09-19T11:59:36Z) - Continuous dynamical decoupling of optical $^{171}$Yb$^{+}$ qudits with
radiofrequency fields [45.04975285107723]
We experimentally achieve a gain in the efficiency of realizing quantum algorithms with qudits.
Our results are a step towards the realization of qudit-based algorithms using trapped ions.
arXiv Detail & Related papers (2023-05-10T11:52:12Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Gaussian quantum estimation of the lossy parameter in a thermal
environment [0.10312968200748115]
Lossy bosonic channels play an important role in a number of quantum information tasks.
We characterize their metrological power in the idler-free and entanglement-assisted cases, using respectively single- and two-mode Gaussian states as probes.
arXiv Detail & Related papers (2022-02-28T19:38:45Z) - Quantum Multi-Parameter Adaptive Bayesian Estimation and Application to
Super-Resolution Imaging [1.4222887950206657]
In quantum sensing tasks, the user gets $rho_theta$, the quantum state that encodes $theta$.
Personick found the optimum POVM $Pi_l$ that minimizes the MMSE over all possible measurements.
This result from 1971 is less-widely known than the quantum Fisher information (QFI), which lower bounds the variance of an unbiased estimator.
arXiv Detail & Related papers (2022-02-21T04:12:55Z) - Efficient Verification of Anticoncentrated Quantum States [0.38073142980733]
I present a novel method for estimating the fidelity $F(mu,tau)$ between a preparable quantum state $mu$ and a classically specified target state $tau$.
I also present a more sophisticated version of the method, which uses any efficiently preparable and well-characterized quantum state as an importance sampler.
arXiv Detail & Related papers (2020-12-15T18:01:11Z) - Hamiltonian operator approximation for energy measurement and ground
state preparation [23.87373187143897]
We show how to approximate the Hamiltonian operator as a sum of propagators using a differential representation.
The proposed approach, named Hamiltonian operator approximation (HOA), is designed to benefit analog quantum simulators.
arXiv Detail & Related papers (2020-09-07T18:11:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.