論文の概要: Post Turing: Mapping the landscape of LLM Evaluation
- arxiv url: http://arxiv.org/abs/2311.02049v1
- Date: Fri, 3 Nov 2023 17:24:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-06 13:19:18.936448
- Title: Post Turing: Mapping the landscape of LLM Evaluation
- Title(参考訳): Post Turing: LLM評価の展望をマッピングする
- Authors: Alexey Tikhonov, Ivan P. Yamshchikov
- Abstract要約: 本稿では,アラン・チューリングによる基礎的疑問からAI研究の現代まで,大規模言語モデル (LLM) 評価の歴史的軌跡を追究する。
これらのモデルのより広範な社会的意味を考慮し、統一的な評価システムの必要性を強調した。
この作業は、AIコミュニティがLLM評価の課題に協力して対処し、信頼性、公正性、社会的な利益を保証するために役立ちます。
- 参考スコア(独自算出の注目度): 22.517544562890663
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the rapidly evolving landscape of Large Language Models (LLMs),
introduction of well-defined and standardized evaluation methodologies remains
a crucial challenge. This paper traces the historical trajectory of LLM
evaluations, from the foundational questions posed by Alan Turing to the modern
era of AI research. We categorize the evolution of LLMs into distinct periods,
each characterized by its unique benchmarks and evaluation criteria. As LLMs
increasingly mimic human-like behaviors, traditional evaluation proxies, such
as the Turing test, have become less reliable. We emphasize the pressing need
for a unified evaluation system, given the broader societal implications of
these models. Through an analysis of common evaluation methodologies, we
advocate for a qualitative shift in assessment approaches, underscoring the
importance of standardization and objective criteria. This work serves as a
call for the AI community to collaboratively address the challenges of LLM
evaluation, ensuring their reliability, fairness, and societal benefit.
- Abstract(参考訳): 急速に発展する大規模言語モデル(llm)の展望では、明確に定義された標準化された評価手法の導入が依然として重要な課題である。
本稿では,アラン・チューリングが提起した基礎的問題からAI研究の現代まで,LLM評価の歴史的軌跡を辿る。
我々はLSMの進化を異なる期間に分類し、それぞれに固有のベンチマークと評価基準を特徴付ける。
LLMはますます人間のような振る舞いを模倣しているため、チューリングテストのような従来の評価プロキシは信頼性が低下している。
これらのモデルのより広範な社会的意味を考慮し、統一評価システムの必要性を強調した。
共通の評価手法の分析を通じて,評価アプローチの質的変化を提唱し,標準化と客観的基準の重要性を強調する。
この作業は、AIコミュニティがLLM評価の課題に協力して対処し、信頼性、公正性、社会的な利益を保証するために役立ちます。
関連論文リスト
- LLM-based relevance assessment still can't replace human relevance assessment [12.829823535454505]
近年の研究では、情報検索における関連性評価のための大規模言語モデル(LLM)が、人間の判断に匹敵する評価をもたらすことが示唆されている。
Upadhyayらは、LLMに基づく関連性評価は、TRECスタイルの評価における従来の人間関連性評価を完全に置き換えることができると主張している。
本稿ではこの主張を批判的に検証し、この結論の妥当性を損なう実践的・理論的制約を強調した。
論文 参考訳(メタデータ) (2024-12-22T20:45:15Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
大言語モデル(LLM)は、要約やダイアログベースのタスクにおいて、非標準化メトリクスの自動評価器として機能する。
人間の判断に比較して,LLMが品質評価指標としていかに優れているかを検討するために,複数のプロンプト戦略にまたがる実験を行った。
論文 参考訳(メタデータ) (2024-12-12T13:31:58Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
大規模言語モデル(LLM)は、生成された自然言語の品質を評価するための自動評価器として有望な能力を示した。
LLMは依然として評価のバイアスを示しており、人間の評価と整合したコヒーレントな評価を生成するのに苦労することが多い。
Pairwise-preference Search (PAIRS) は、LLMを用いた不確実性誘導検索に基づくランクアグリゲーション手法で、局所的にペアワイズ比較を行い、グローバルに候補テキストを効率よくランク付けする。
論文 参考訳(メタデータ) (2024-03-25T17:11:28Z) - HD-Eval: Aligning Large Language Model Evaluators Through Hierarchical
Criteria Decomposition [92.17397504834825]
HD-Evalは、大規模な言語モデル評価ツールと人間の好みを反復的に調整するフレームワークである。
HD-Evalは、人間の専門家の評価思想から本質を継承し、LLMに基づく評価器のアライメントを強化する。
3つの評価領域に関する広範囲な実験は、HD-Evalのさらなる整合状態評価器の優位性を実証している。
論文 参考訳(メタデータ) (2024-02-24T08:01:32Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
我々は、23の最先端のLarge Language Models (LLMs)ベンチマークを批判的に評価する。
私たちの研究は、バイアス、真の推論、適応性、実装の不整合、エンジニアリングの複雑さ、多様性、文化的およびイデオロギー規範の見落としなど、重大な制限を明らかにしました。
論文 参考訳(メタデータ) (2024-02-15T11:08:10Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
大規模言語モデル(LLM)が人間にとって信頼できる代替手段であるかどうかを解析する。
本稿では、従来のタスク(例えば、ストーリー生成)とアライメントタスク(例えば、数学推論)の両方について検討する。
LLM評価器は不要な基準を生成したり、重要な基準を省略することができる。
論文 参考訳(メタデータ) (2023-10-30T17:04:35Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z) - Understanding Social Reasoning in Language Models with Language Models [34.068368860882586]
本稿では,因果テンプレートを投入することにより,Large Language Models (LLM) による評価を生成する新しいフレームワークを提案する。
LLMのための新しいソーシャル推論ベンチマーク(BigToM)を作成し、25のコントロールと5000のモデル記述評価からなる。
ヒトの被験者は、これまでのクラウドソースによる評価よりもベンチマークの質を高く評価し、専門家による評価に匹敵することがわかった。
論文 参考訳(メタデータ) (2023-06-21T16:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。