Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models
- URL: http://arxiv.org/abs/2310.19917v3
- Date: Mon, 1 Jul 2024 17:26:23 GMT
- Title: Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models
- Authors: Feng Chen, Liqin Wang, Julie Hong, Jiaqi Jiang, Li Zhou,
- Abstract summary: Leveraging artificial intelligence in conjunction with electronic health records holds transformative potential to improve healthcare.
Yet, addressing bias in AI, which risks worsening healthcare disparities, cannot be overlooked.
This study reviews methods to detect and mitigate diverse forms of bias in AI models developed using EHR data.
- Score: 6.300835344100545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objectives: Leveraging artificial intelligence (AI) in conjunction with electronic health records (EHRs) holds transformative potential to improve healthcare. Yet, addressing bias in AI, which risks worsening healthcare disparities, cannot be overlooked. This study reviews methods to detect and mitigate diverse forms of bias in AI models developed using EHR data. Methods: We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, analyzing articles from PubMed, Web of Science, and IEEE published between January 1, 2010, and Dec 17, 2023. The review identified key biases, outlined strategies for detecting and mitigating bias throughout the AI model development process, and analyzed metrics for bias assessment. Results: Of the 450 articles retrieved, 20 met our criteria, revealing six major bias types: algorithmic, confounding, implicit, measurement, selection, and temporal. The AI models were primarily developed for predictive tasks in healthcare settings. Four studies concentrated on the detection of implicit and algorithmic biases employing fairness metrics like statistical parity, equal opportunity, and predictive equity. Sixty proposed various strategies for mitigating biases, especially targeting implicit and selection biases. These strategies, evaluated through both performance (e.g., accuracy, AUROC) and fairness metrics, predominantly involved data collection and preprocessing techniques like resampling, reweighting, and transformation. Discussion: This review highlights the varied and evolving nature of strategies to address bias in EHR-based AI models, emphasizing the urgent needs for the establishment of standardized, generalizable, and interpretable methodologies to foster the creation of ethical AI systems that promote fairness and equity in healthcare.
Related papers
- A survey of recent methods for addressing AI fairness and bias in
biomedicine [48.46929081146017]
Artificial intelligence systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender.
We surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV)
We performed a literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords.
We reviewed other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.
arXiv Detail & Related papers (2024-02-13T06:38:46Z) - Detecting algorithmic bias in medical-AI models using trees [7.939586935057782]
This paper presents an innovative framework for detecting areas of algorithmic bias in medical-AI decision support systems.
Our approach efficiently identifies potential biases in medical-AI models, specifically in the context of sepsis prediction.
arXiv Detail & Related papers (2023-12-05T18:47:34Z) - An AI-Guided Data Centric Strategy to Detect and Mitigate Biases in
Healthcare Datasets [32.25265709333831]
We generate a data-centric, model-agnostic, task-agnostic approach to evaluate dataset bias by investigating the relationship between how easily different groups are learned at small sample sizes (AEquity)
We then apply a systematic analysis of AEq values across subpopulations to identify and manifestations of racial bias in two known cases in healthcare.
AEq is a novel and broadly applicable metric that can be applied to advance equity by diagnosing and remediating bias in healthcare datasets.
arXiv Detail & Related papers (2023-11-06T17:08:41Z) - Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging [2.0890189482817165]
We introduce a novel analysis framework for investigating the impact of biases in medical images on AI models.
We developed and tested this framework for conducting controlled in silico trials to assess bias in medical imaging AI.
arXiv Detail & Related papers (2023-11-03T01:37:28Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
This survey paper offers a succinct, comprehensive overview of fairness and bias in AI.
We review sources of bias, such as data, algorithm, and human decision biases.
We assess the societal impact of biased AI systems, focusing on the perpetuation of inequalities and the reinforcement of harmful stereotypes.
arXiv Detail & Related papers (2023-04-16T03:23:55Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.