論文の概要: Pairing-based graph neural network for simulating quantum materials
- arxiv url: http://arxiv.org/abs/2311.02143v2
- Date: Tue, 21 Nov 2023 15:54:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 04:12:39.859457
- Title: Pairing-based graph neural network for simulating quantum materials
- Title(参考訳): 量子材料シミュレーションのためのペアリンググラフニューラルネットワーク
- Authors: Di Luo, David D. Dai, and Liang Fu
- Abstract要約: 量子多体系をシミュレーションするためのペアリング型グラフニューラルネットワークを開発した。
我々のニューラルネットワークを用いた変分モンテカルロは、多数の電子システムをシミュレートするための正確で柔軟でスケーラブルな手法を同時に提供します。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a pairing-based graph neural network for simulating quantum
many-body systems. Our architecture augments a BCS-type geminal wavefunction
with a generalized pair amplitude parameterized by a graph neural network.
Variational Monte Carlo with our neural network simultaneously provides an
accurate, flexible, and scalable method for simulating many-electron systems.
We apply this method to two-dimensional semiconductor electron-hole bilayers
and obtain accurate results on a variety of interaction-induced phases,
including the exciton Bose-Einstein condensate, electron-hole superconductor,
and bilayer Wigner crystal. Our study demonstrates the potential of
physically-motivated neural network wavefunctions for quantum materials
simulations.
- Abstract(参考訳): 量子多体系をシミュレートするペアリング型グラフニューラルネットワークを開発した。
我々のアーキテクチャは、グラフニューラルネットワークによってパラメータ化された一般化ペア振幅で、BCS型ゲミナル波動関数を増強する。
我々のニューラルネットワークを用いた変分モンテカルロは、多電子系をシミュレートするための高精度でフレキシブルでスケーラブルな手法を提供する。
この手法を2次元半導体電子ホール二層膜に適用し、エキシトンボース・アインシュタイン凝縮体、電子ホール超伝導体、二層ウィグナー結晶を含む様々な相互作用誘起相の正確な結果を得る。
本研究は,量子材料シミュレーションにおける物理的動機付け型ニューラルネットワーク波動関数の可能性を示す。
関連論文リスト
- Quantum circuits for digital quantum simulation of nonlocal electron-phonon coupling [0.0]
本稿では,一次元格子モデルのデジタル量子シミュレータを提案する。
このシステムの自然初期(プリクエンチ)状態を生成する回路を示す。
論文 参考訳(メタデータ) (2024-10-10T17:07:57Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation [5.283885355422517]
我々は,テンソルネットワークと自己回帰ニューラルネットワークを橋渡しする新しいアーキテクチャであるAutoregressive NeuralNetを開発した。
自己回帰ニューラルネットワークは、正規化波動関数をパラメータ化し、テンソルネットワークと自己回帰ニューラルネットワークの表現性を一般化し、自己回帰ニューラルネットワークから様々な対称性を継承することを示す。
我々の研究は、量子多体物理シミュレーション、量子技術設計、人工知能における生成モデリングの新しい機会を開く。
論文 参考訳(メタデータ) (2023-04-04T17:54:14Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Artificial stochastic neural network on the base of double quantum wells [0.0]
本稿では,量子力学粒子を応用したニューラルネットワークのモデルについて検討する。
粒子の自己ポテンシャルの形式と2つの相互作用ポテンシャル(励起と阻害)が提案される。
論文 参考訳(メタデータ) (2022-08-16T07:54:19Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
超伝導フォトニックバンドギャップメタマテリアルに局所的に接続された量子ビットの線形配列に基づく量子シミュレータアーキテクチャを提案する。
メタマテリアルは量子バスとして、量子ビットと量子ビットの相互作用を媒介し、また多重量子ビット状態測定のための読み出しチャネルとして機能する。
我々は、量子多体カオスに基づく測定効率の高いプロトコルを用いて、システムのハミルトニアンを特徴づける。
論文 参考訳(メタデータ) (2022-06-26T06:51:54Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave
Functions [2.61072980439312]
本研究では、グラフニューラルネットワーク(GNN)とニューラルウェーブ関数を組み合わせることで、VMCを介して複数の測地に対するシュル「オーディンガー方程式」を同時に解く。
既存の最先端ネットワークと比較して、私たちのポテンシャルエネルギーサーフェスネットワーク(PESNet)は、複数のジオメトリーのトレーニングを最大40倍スピードアップし、その精度をマッチングまたは超過します。
論文 参考訳(メタデータ) (2021-10-11T07:58:31Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
表面音響波(SAW)は、圧電材料内で動く量子ドットを生成することができる。
動的量子ドット上の電子スピン量子ビットがどのように絡み合うかを示す。
論文 参考訳(メタデータ) (2020-01-15T19:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。