Quantum Communications
- URL: http://arxiv.org/abs/2311.02367v1
- Date: Sat, 4 Nov 2023 10:34:39 GMT
- Title: Quantum Communications
- Authors: Michal Hajdu\v{s}ek and Rodney Van Meter
- Abstract summary: Quantum technologies are starting to attract more attention from governments, private companies, investors, and public.
The ability to control individual quantum systems for the purpose of information processing and communication is no longer a theoretical dream.
This textbook is a companion to our video lectures on Overview of Quantum Communications.
- Score: 0.65268245109828
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The second quantum revolution has been picking up momentum over the last
decade. Quantum technologies are starting to attract more attention from
governments, private companies, investors, and public. The ability to control
individual quantum systems for the purpose of information processing and
communication is no longer a theoretical dream, but is steadily becoming
routine in laboratories and startups around the world. With this comes the need
to educate the future generation of quantum engineers. This textbook is a
companion to our video lectures on Overview of Quantum Communications from the
Q-Leap Education project known as Quantum Academy of Science and Technology. It
is a gentle introduction to quantum networks, and is suitable for use as a
textbook for undergraduate students of diverse background. No prior knowledge
of quantum physics or quantum information is assumed. Exercises are included in
each chapter.
Related papers
- Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Programming with Quantum Mechanics [0.7219077740523683]
Quantum computing is an emerging paradigm that opens a new era for exponential computational speedup.
This tutorial gives a broad view of quantum computing, abstracting most of the mathematical formalism and proposing a hands-on with the quantum programming language Ket.
arXiv Detail & Related papers (2022-10-27T14:38:42Z) - Hello Quantum World! A rigorous but accessible first-year university
course in quantum information science [0.0]
Hello Quantum World! introduces a broad range of fundamental quantum information and computation concepts.
Some of the topics covered include superposition, entanglement, quantum gates, teleportation, quantum algorithms, and quantum error correction.
arXiv Detail & Related papers (2022-09-25T18:59:47Z) - The Physics of Quantum Information [0.0]
I review four intertwined themes encompassed by this topic: Quantum computer science, quantum hardware, quantum matter, and quantum gravity.
In the longer term, controlling highly complex quantum matter will open the door to profound scientific advances and powerful new technologies.
arXiv Detail & Related papers (2022-08-17T04:35:36Z) - The Quantum Internet: A Hardware Review [0.0]
The quantum internet is the next major milestone in quantum technology.
This paper reviews the hardware aspects of the quantum internet, mainly from a photonics perspective.
arXiv Detail & Related papers (2022-06-30T15:53:05Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - On quantum neural networks [91.3755431537592]
We argue that the concept of a quantum neural network should be defined in terms of its most general function.
Our reasoning is based on the use of the Feynman path integral formulation in quantum mechanics.
arXiv Detail & Related papers (2021-04-12T18:30:30Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Information for Particle Theorists [0.0]
Lectures given at the Theoretical Advanced Study Institute (TASI 2020), 1-26 June 2020.
The topics covered include quantum circuits, entanglement, quantum teleportation, Bell inequalities, quantum entropy and decoherence.
Links to a Python notebook and Mathematica notebooks will allow the reader to reproduce and extend the calculations, as well as perform five experiments on a quantum simulator.
arXiv Detail & Related papers (2020-10-06T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.