The quantum superposition principle: a reconsideration
- URL: http://arxiv.org/abs/2311.02391v1
- Date: Sat, 4 Nov 2023 12:18:54 GMT
- Title: The quantum superposition principle: a reconsideration
- Authors: Ivan Georgiev Koprinkov
- Abstract summary: The quantum superposition principle is reconsidered based on adiabatic theorem of quantum mechanics.
The physical mechanism and physical properties of the quantum superposition are revealed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum superposition principle is reconsidered based on adiabatic
theorem of quantum mechanics, nonadiabatic dressed states and experimental
evidence. The physical mechanism and physical properties of the quantum
superposition are revealed.
Related papers
- What is "quantum" about quantum gravity? [0.0]
We argue that if both the equivalence principle and quantum mechanics continue to survive experimental tests, that this favors epistemic'' interpretations of quantum mechanics.
arXiv Detail & Related papers (2024-05-13T21:19:50Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum Superposition, Collapse of Wave Function, Quantum Measurement
and Nonadiabatic Dressed States [0.0]
Quantum superposition, collapse of wave function and quantum measurement problem are reexamined based on nonadiabatic dressed states and experimental observations on the quantum transitions.
arXiv Detail & Related papers (2023-09-29T16:27:50Z) - Quantum Relativity [0.0]
A new quantum postulate is suggested to restore classical locality and causality to quantum physics.
This postulate supports the EPR view that quantum mechanics is incomplete, while also staying compatible to the Bohr view that nothing exists beyond the quantum.
arXiv Detail & Related papers (2023-02-04T02:05:25Z) - On the gravitization of quantum mechanics and wave function reduction in
Bohmian quantum mechanics [0.0]
This paper uses Einstein's equivalence principle in the description of the gravity-induced wave function reduction in the framework of Bohmian causal quantum theory.
The critical mass for transition from the quantum world to the classical world, the reduction time of the wave function and the temperature that corresponds to the Unruh temperature will be obtained.
arXiv Detail & Related papers (2022-09-01T14:58:35Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum fluctuations, quanta of electromagnetic interaction, quantum
electronic bound states [0.0]
We discuss the physical content of the phenomena underlying the principle of quantum uncertainties.
We consider the features of the uncertainty relations and the properties of the elementary particles under the conditions of the formation of quantum bound states at atomic and subatomic distances.
arXiv Detail & Related papers (2022-07-31T20:22:14Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.