Neural-based Compression Scheme for Solar Image Data
- URL: http://arxiv.org/abs/2311.02855v1
- Date: Mon, 6 Nov 2023 04:13:58 GMT
- Title: Neural-based Compression Scheme for Solar Image Data
- Authors: Ali Zafari, Atefeh Khoshkhahtinat, Jeremy A. Grajeda, Piyush M. Mehta,
Nasser M. Nasrabadi, Laura E. Boucheron, Barbara J. Thompson, Michael S. F.
Kirk, Daniel da Silva
- Abstract summary: We propose a neural network-based lossy compression method to be used in NASA's data-intensive imagery missions.
In this work, we propose an adversarially trained neural network, equipped with local and non-local attention modules to capture both the local and global structure of the image.
As a proof of concept for use of this algorithm in SDO data analysis, we have performed coronal hole (CH) detection using our compressed images.
- Score: 8.374518151411612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Studying the solar system and especially the Sun relies on the data gathered
daily from space missions. These missions are data-intensive and compressing
this data to make them efficiently transferable to the ground station is a
twofold decision to make. Stronger compression methods, by distorting the data,
can increase data throughput at the cost of accuracy which could affect
scientific analysis of the data. On the other hand, preserving subtle details
in the compressed data requires a high amount of data to be transferred,
reducing the desired gains from compression. In this work, we propose a neural
network-based lossy compression method to be used in NASA's data-intensive
imagery missions. We chose NASA's SDO mission which transmits 1.4 terabytes of
data each day as a proof of concept for the proposed algorithm. In this work,
we propose an adversarially trained neural network, equipped with local and
non-local attention modules to capture both the local and global structure of
the image resulting in a better trade-off in rate-distortion (RD) compared to
conventional hand-engineered codecs. The RD variational autoencoder used in
this work is jointly trained with a channel-dependent entropy model as a shared
prior between the analysis and synthesis transforms to make the entropy coding
of the latent code more effective. Our neural image compression algorithm
outperforms currently-in-use and state-of-the-art codecs such as JPEG and
JPEG-2000 in terms of the RD performance when compressing extreme-ultraviolet
(EUV) data. As a proof of concept for use of this algorithm in SDO data
analysis, we have performed coronal hole (CH) detection using our compressed
images, and generated consistent segmentations, even at a compression rate of
$\sim0.1$ bits per pixel (compared to 8 bits per pixel on the original data)
using EUV data from SDO.
Related papers
- Neural-based Video Compression on Solar Dynamics Observatory Images [8.73521037463594]
NASA's Solar Dynamics Observatory (SDO) mission collects extensive data to monitor the Sun's daily activity.
Data compression plays a crucial role in addressing the challenges posed by limited telemetry rates.
This paper introduces a neural video compression technique that achieves a high compression ratio for the SDO's image data collection.
arXiv Detail & Related papers (2024-07-12T21:24:25Z) - Convolutional variational autoencoders for secure lossy image compression in remote sensing [47.75904906342974]
This study investigates image compression based on convolutional variational autoencoders (CVAE)
CVAEs have been demonstrated to outperform conventional compression methods such as JPEG2000 by a substantial margin on compression benchmark datasets.
arXiv Detail & Related papers (2024-04-03T15:17:29Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - Attention-Based Generative Neural Image Compression on Solar Dynamics
Observatory [12.283978726972752]
NASA's Solar Dynamics Observatory (SDO) mission gathers 1.4 terabytes of data each day from its geosynchronous orbit in space.
Recently, end-to-end optimized artificial neural networks (ANN) have shown great potential in performing image compression.
We have designed an ad-hoc ANN-based image compression scheme to reduce the amount of data needed to be stored and retrieved on space missions.
arXiv Detail & Related papers (2022-10-12T17:39:08Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - COIN++: Data Agnostic Neural Compression [55.27113889737545]
COIN++ is a neural compression framework that seamlessly handles a wide range of data modalities.
We demonstrate the effectiveness of our method by compressing various data modalities.
arXiv Detail & Related papers (2022-01-30T20:12:04Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Deep data compression for approximate ultrasonic image formation [1.0266286487433585]
In ultrasonic imaging systems, data acquisition and image formation are performed on separate computing devices.
Deep neural networks are optimized to preserve the image quality of a particular image formation method.
arXiv Detail & Related papers (2020-09-04T16:43:12Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.