SugarViT -- Multi-objective Regression of UAV Images with Vision
Transformers and Deep Label Distribution Learning Demonstrated on Disease
Severity Prediction in Sugar Beet
- URL: http://arxiv.org/abs/2311.03076v3
- Date: Thu, 1 Feb 2024 18:47:18 GMT
- Title: SugarViT -- Multi-objective Regression of UAV Images with Vision
Transformers and Deep Label Distribution Learning Demonstrated on Disease
Severity Prediction in Sugar Beet
- Authors: Maurice G\"under, Facundo Ram\'on Ispizua Yamati, Abel Andree Barreto
Alc\'antara, Anne-Katrin Mahlein, Rafet Sifa, Christian Bauckhage
- Abstract summary: This work will introduce a machine learning framework for automatized large-scale plant-specific trait annotation.
We develop an efficient Vision Transformer based model for disease severity scoring called SugarViT.
Although the model is evaluated on this special use case, it is held as generic as possible to also be applicable to various image-based classification and regression tasks.
- Score: 3.2925222641796554
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Remote sensing and artificial intelligence are pivotal technologies of
precision agriculture nowadays. The efficient retrieval of large-scale field
imagery combined with machine learning techniques shows success in various
tasks like phenotyping, weeding, cropping, and disease control. This work will
introduce a machine learning framework for automatized large-scale
plant-specific trait annotation for the use case disease severity scoring for
Cercospora Leaf Spot (CLS) in sugar beet. With concepts of Deep Label
Distribution Learning (DLDL), special loss functions, and a tailored model
architecture, we develop an efficient Vision Transformer based model for
disease severity scoring called SugarViT. One novelty in this work is the
combination of remote sensing data with environmental parameters of the
experimental sites for disease severity prediction. Although the model is
evaluated on this special use case, it is held as generic as possible to also
be applicable to various image-based classification and regression tasks. With
our framework, it is even possible to learn models on multi-objective problems
as we show by a pretraining on environmental metadata.
Related papers
- Small data deep learning methodology for in-field disease detection [6.2747249113031325]
We present the first machine learning model capable of detecting mild symptoms of late blight in potato crops.
Our proposal exploits the availability of high-resolution images via the concept of patching, and is based on deep convolutional neural networks with a focal loss function.
Our model correctly detects all cases of late blight in the test dataset, demonstrating a high level of accuracy and effectiveness in identifying early symptoms.
arXiv Detail & Related papers (2024-09-25T17:31:17Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Machine Learning-Based Jamun Leaf Disease Detection: A Comprehensive
Review [0.0]
Jamun leaf diseases pose a significant threat to agricultural productivity.
The advent of machine learning has opened up new avenues for tackling these diseases effectively.
Various automated systems have been implemented for similar types of disease detection using image processing techniques.
arXiv Detail & Related papers (2023-11-27T11:46:30Z) - Machine Learning-Based Tea Leaf Disease Detection: A Comprehensive
Review [3.3916160303055563]
Tea leaf diseases are a major challenge to agricultural productivity, with far-reaching implications for yield and quality in the tea industry.
The rise of machine learning has enabled the development of innovative approaches to combat these diseases.
For predicting tea leaf disease, several automated systems have already been developed using different image processing techniques.
arXiv Detail & Related papers (2023-11-06T16:30:40Z) - Improving FHB Screening in Wheat Breeding Using an Efficient Transformer
Model [0.0]
Fusarium head blight is a devastating disease that causes significant economic losses annually on small grains.
Image processing techniques have been developed using supervised machine learning algorithms for the early detection of FHB.
A new Context Bridge is proposed to integrate the local representation capability of the U-Net network in the transformer model.
arXiv Detail & Related papers (2023-08-07T15:44:58Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
We conduct a search for good representations in pathology by training a variety of self-supervised models with validation on a variety of weakly-supervised and patch-level tasks.
Our key finding is in discovering that Vision Transformers using DINO-based knowledge distillation are able to learn data-efficient and interpretable features in histology images.
arXiv Detail & Related papers (2022-03-01T16:14:41Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.