論文の概要: Edge AI Inference in Heterogeneous Constrained Computing: Feasibility
and Opportunities
- arxiv url: http://arxiv.org/abs/2311.03375v1
- Date: Fri, 27 Oct 2023 16:46:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-12 19:31:11.185573
- Title: Edge AI Inference in Heterogeneous Constrained Computing: Feasibility
and Opportunities
- Title(参考訳): 不均一制約コンピューティングにおけるエッジAI推論の可能性と可能性
- Authors: Roberto Morabito, Mallik Tatipamula, Sasu Tarkoma, Mung Chiang
- Abstract要約: AI推論アクセラレータの急増はイノベーションを示すだけでなく、課題も浮き彫りにしている。
本稿では,ハードウェアの多様性に対応するフレームワークの要件とコンポーネントについて概説する。
次に、デバイスの不均一性がAI推論性能に与える影響を評価し、サービス品質を損なうことなく結果の最適化戦略を特定する。
- 参考スコア(独自算出の注目度): 9.156192191794567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The network edge's role in Artificial Intelligence (AI) inference processing
is rapidly expanding, driven by a plethora of applications seeking
computational advantages. These applications strive for data-driven efficiency,
leveraging robust AI capabilities and prioritizing real-time responsiveness.
However, as demand grows, so does system complexity. The proliferation of AI
inference accelerators showcases innovation but also underscores challenges,
particularly the varied software and hardware configurations of these devices.
This diversity, while advantageous for certain tasks, introduces hurdles in
device integration and coordination. In this paper, our objectives are
three-fold. Firstly, we outline the requirements and components of a framework
that accommodates hardware diversity. Next, we assess the impact of device
heterogeneity on AI inference performance, identifying strategies to optimize
outcomes without compromising service quality. Lastly, we shed light on the
prevailing challenges and opportunities in this domain, offering insights for
both the research community and industry stakeholders.
- Abstract(参考訳): 人工知能(AI)推論処理におけるネットワークエッジの役割は、計算上の優位性を求める多くのアプリケーションによって急速に拡大している。
これらのアプリケーションはデータ駆動効率を追求し、堅牢なai機能を活用し、リアルタイム応答性を優先する。
しかし、需要が増加するにつれて、システムも複雑になる。
AI推論アクセラレータの急増はイノベーションを示すだけでなく、特にこれらのデバイスのさまざまなソフトウェアやハードウェア構成といった課題も浮き彫りにしている。
この多様性は特定のタスクに有利だが、デバイス統合と調整のハードルをもたらす。
本稿では,3つの目的について述べる。
まず,ハードウェアの多様性に対応するフレームワークの要件とコンポーネントについて概説する。
次に、デバイスの不均一性がAI推論性能に与える影響を評価し、サービス品質を損なうことなく結果の最適化戦略を特定する。
最後に、私たちはこの分野における一般的な課題と機会について、リサーチコミュニティと業界関係者の両方に洞察を与えました。
関連論文リスト
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
本稿では,企業の技術的トラブルシューティングに適したRAG(Weighted Retrieval-Augmented Generation)フレームワーク上に構築されたエージェントAIソリューションを提案する。
製品マニュアル、内部知識ベース、FAQ、トラブルシューティングガイドなどの検索ソースを動的に重み付けすることで、最も関連性の高いデータを優先順位付けする。
大規模エンタープライズデータセットに関する予備評価では、トラブルシューティングの精度を改善し、解決時間を短縮し、さまざまな技術的課題に適応する上で、フレームワークの有効性が示されている。
論文 参考訳(メタデータ) (2024-12-16T17:32:38Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices [0.0]
エッジIoTデバイスはFPGAとAIアクセラレータの導入によってパラダイムシフトを経験している。
この進歩は、エッジAIの実用性を強調し、その計算能力を大幅に増幅した。
本研究では,AI対応エッジデバイスによる分散データ処理を実現する手法について検討し,協調学習能力を向上する。
論文 参考訳(メタデータ) (2024-03-14T07:40:32Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Which Design Decisions in AI-enabled Mobile Applications Contribute to
Greener AI? [7.194465440864905]
このレポートは、AI対応アプリケーションの性能に対する設計決定の影響を定量化する実証的研究を行う計画で構成されている。
我々は、複数の画像分類とテキスト分類問題を解決するために、モバイルアプリケーションに画像ベースニューラルネットワークと言語ベースニューラルネットワークの両方を実装します。
論文 参考訳(メタデータ) (2021-09-28T07:30:28Z) - How to Reach Real-Time AI on Consumer Devices? Solutions for
Programmable and Custom Architectures [7.085772863979686]
ディープニューラルネットワーク(DNN)は、オブジェクトや音声認識など、さまざまな人工知能(AI)推論タスクにおいて大きな進歩をもたらした。
このようなAIモデルをコモディティデバイスにデプロイすることは、大きな課題に直面している。
クロススタック手法によりリアルタイムな性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2021-06-21T11:23:12Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。