Using Boolean Satisfiability for Exact Shuttling in Trapped-Ion Quantum
Computers
- URL: http://arxiv.org/abs/2311.03454v1
- Date: Mon, 6 Nov 2023 19:00:22 GMT
- Title: Using Boolean Satisfiability for Exact Shuttling in Trapped-Ion Quantum
Computers
- Authors: Daniel Schoenberger, Stefan Hillmich, Matthias Brandl, Robert Wille
- Abstract summary: Trapped ions are a promising technology for building scalable quantum computers.
We propose a formalization of the possible movements in ion traps via Boolean satisfiability.
This formalization allows for determining the minimal number of time steps needed for a given quantum algorithm and device architecture.
- Score: 3.1066111470235462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trapped ions are a promising technology for building scalable quantum
computers. Not only can they provide a high qubit quality, but they also enable
modular architectures, referred to as Quantum Charge Coupled Device (QCCD)
architecture. Within these devices, ions can be shuttled (moved) throughout the
trap and through different dedicated zones, e.g., a memory zone for storage and
a processing zone for the actual computation. However, this movement incurs a
cost in terms of required time steps, which increases the probability of
decoherence, and, thus, should be minimized. In this paper, we propose a
formalization of the possible movements in ion traps via Boolean
satisfiability. This formalization allows for determining the minimal number of
time steps needed for a given quantum algorithm and device architecture, hence
reducing the decoherence probability. An empirical evaluation confirms that --
using the proposed approach -- minimal results (i.e., the lower bound) can be
determined for the first time. An open-source implementation of the proposed
approach is publicly available at https://github.com/cda-tum/mqt-ion-shuttler.
Related papers
- Scaling and assigning resources on ion trap QCCD architectures [0.0]
Ion trap technologies have earned significant attention as potential candidates for quantum information processing.
We propose a novel approach for initial qubit placement, demonstrating enhancements of up to 50% compared to prior methods.
arXiv Detail & Related papers (2024-08-01T01:35:55Z) - Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
This paper proposes a hybrid quantum-classical algorithm for compiling the time-evolution operator.
It achieves a 95% reduction in circuit depth compared to Trotterization while maintaining accuracy.
We estimate the gate count needed to execute the quantum simulations using the LSVQC on near-term quantum computing architectures.
arXiv Detail & Related papers (2024-07-19T09:50:01Z) - An Abstract Model and Efficient Routing for Logical Entangling Gates on Zoned Neutral Atom Architectures [4.306566710489809]
Recent achievements have demonstrated the potential of neutral atom architectures for fault-tolerant quantum computing.
This paper provides an abstract model of the novel architecture and an efficient solution to the routing problem of entangling gates.
In addition to that, we consider logical qubit arrays, each of which encodes one logical qubit.
arXiv Detail & Related papers (2024-05-13T18:00:01Z) - Shuttling for Scalable Trapped-Ion Quantum Computers [2.8956730787977083]
We propose an efficient shuttling schedule for Trapped-ion quantum computers.
The proposed approach produces shuttling schedules with a close-to-minimal amount of time steps.
An implementation of the proposed approach is publicly available as part of the open-source Munich Quantum Toolkit.
arXiv Detail & Related papers (2024-02-21T19:00:04Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Time-Sliced Quantum Circuit Partitioning for Modular Architectures [67.85032071273537]
Current quantum computer designs will not scale.
To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters.
We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitionings which map quantum circuits to modular physical machines one time slice at a time.
arXiv Detail & Related papers (2020-05-25T17:58:44Z) - Efficient State Preparation for Quantum Amplitude Estimation [0.951828574518325]
Quantum Amplitude Estimation can achieve a quadratic speed-up for applications classically solved by Monte Carlo simulation.
Currently known efficient techniques require problems based on log-concave probability distributions, involve learning an unknown distribution from empirical data, or fully rely on quantum arithmetic.
We introduce an approach to simplify state preparation, together with a circuit optimization technique, both of which can help reduce the circuit complexity for QAE state preparation significantly.
arXiv Detail & Related papers (2020-05-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.