InterVLS: Interactive Model Understanding and Improvement with Vision-Language Surrogates
- URL: http://arxiv.org/abs/2311.03547v2
- Date: Tue, 25 Jun 2024 16:37:48 GMT
- Title: InterVLS: Interactive Model Understanding and Improvement with Vision-Language Surrogates
- Authors: Jinbin Huang, Wenbin He, Liang Gou, Liu Ren, Chris Bryan,
- Abstract summary: Deep learning models are widely used in critical applications, highlighting the need for pre-deployment model understanding and improvement.
Visual concept-based methods, while increasingly used for this purpose, face challenges: (1) most concepts lack interpretability, (2) existing methods require model knowledge, often unavailable at run time, and (3) there lacks a no-code method for post-understanding model improvement.
We present InterVLS, which facilitates model understanding by discovering text-aligned concepts, measuring their influence with model-agnostic linear surrogates.
- Score: 18.793275018467163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are widely used in critical applications, highlighting the need for pre-deployment model understanding and improvement. Visual concept-based methods, while increasingly used for this purpose, face challenges: (1) most concepts lack interpretability, (2) existing methods require model knowledge, often unavailable at run time. Additionally, (3) there lacks a no-code method for post-understanding model improvement. Addressing these, we present InterVLS. The system facilitates model understanding by discovering text-aligned concepts, measuring their influence with model-agnostic linear surrogates. Employing visual analytics, InterVLS offers concept-based explanations and performance insights. It enables users to adjust concept influences to update a model, facilitating no-code model improvement. We evaluate InterVLS in a user study, illustrating its functionality with two scenarios. Results indicates that InterVLS is effective to help users identify influential concepts to a model, gain insights and adjust concept influence to improve the model. We conclude with a discussion based on our study results.
Related papers
- Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiViz is a method for analyzing the behavior of multimodal models by scaffolding the problem of interpretability into 4 stages.
We show that the complementary stages in MultiViz together enable users to simulate model predictions, assign interpretable concepts to features, perform error analysis on model misclassifications, and use insights from error analysis to debug models.
arXiv Detail & Related papers (2022-06-30T18:42:06Z) - UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes [91.24112204588353]
We introduce UViM, a unified approach capable of modeling a wide range of computer vision tasks.
In contrast to previous models, UViM has the same functional form for all tasks.
We demonstrate the effectiveness of UViM on three diverse and challenging vision tasks.
arXiv Detail & Related papers (2022-05-20T17:47:59Z) - Analyzing a Caching Model [7.378507865227209]
Interpretability remains a major obstacle for adoption in real-world deployments.
By analyzing a state-of-the-art caching model, we provide evidence that the model has learned concepts beyond simple statistics.
arXiv Detail & Related papers (2021-12-13T19:53:07Z) - AdViCE: Aggregated Visual Counterfactual Explanations for Machine
Learning Model Validation [9.996986104171754]
We introduce AdViCE, a visual analytics tool that aims to guide users in black-box model debug and validation.
The solution rests on two main visual user interface innovations: (1) an interactive visualization that enables the comparison of decisions on user-defined data subsets; (2) an algorithm and visual design to compute and visualize counterfactual explanations.
arXiv Detail & Related papers (2021-09-12T22:52:12Z) - Intuitively Assessing ML Model Reliability through Example-Based
Explanations and Editing Model Inputs [19.09848738521126]
Interpretability methods aim to help users build trust in and understand the capabilities of machine learning models.
We present two interface modules to facilitate a more intuitive assessment of model reliability.
arXiv Detail & Related papers (2021-02-17T02:41:32Z) - VinVL: Revisiting Visual Representations in Vision-Language Models [96.39332942534368]
We develop an improved object detection model to provide object-centric representations of images.
New visual features significantly improve the performance across all vision language (VL) tasks.
We will release the new object detection model to public.
arXiv Detail & Related papers (2021-01-02T23:35:27Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z) - ViCE: Visual Counterfactual Explanations for Machine Learning Models [13.94542147252982]
We present an interactive visual analytics tool, ViCE, that generates counterfactual explanations to contextualize and evaluate model decisions.
Results are effectively displayed in a visual interface where counterfactual explanations are highlighted and interactive methods are provided for users to explore the data and model.
arXiv Detail & Related papers (2020-03-05T04:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.