Can LLMs Follow Simple Rules?
- URL: http://arxiv.org/abs/2311.04235v3
- Date: Fri, 8 Mar 2024 17:04:49 GMT
- Title: Can LLMs Follow Simple Rules?
- Authors: Norman Mu, Sarah Chen, Zifan Wang, Sizhe Chen, David Karamardian,
Lulwa Aljeraisy, Basel Alomair, Dan Hendrycks, David Wagner
- Abstract summary: Rule-following Language Evaluation Scenarios (RuLES) is a framework for measuring rule-following ability in Large Language Models.
RuLES consists of 14 simple text scenarios in which the model is instructed to obey various rules while interacting with the user.
We show that almost all current models struggle to follow scenario rules, even on straightforward test cases.
- Score: 28.73820874333199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) are deployed with increasing real-world
responsibilities, it is important to be able to specify and constrain the
behavior of these systems in a reliable manner. Model developers may wish to
set explicit rules for the model, such as "do not generate abusive content",
but these may be circumvented by jailbreaking techniques. Existing evaluations
of adversarial attacks and defenses on LLMs generally require either expensive
manual review or unreliable heuristic checks. To address this issue, we propose
Rule-following Language Evaluation Scenarios (RuLES), a programmatic framework
for measuring rule-following ability in LLMs. RuLES consists of 14 simple text
scenarios in which the model is instructed to obey various rules while
interacting with the user. Each scenario has a programmatic evaluation function
to determine whether the model has broken any rules in a conversation. Our
evaluations of proprietary and open models show that almost all current models
struggle to follow scenario rules, even on straightforward test cases. We also
demonstrate that simple optimization attacks suffice to significantly increase
failure rates on test cases. We conclude by exploring two potential avenues for
improvement: test-time steering and supervised fine-tuning.
Related papers
- RNR: Teaching Large Language Models to Follow Roles and Rules [153.6596303205894]
We propose model, an automated data generation pipeline that generates diverse roles and rules from existing IFT instructions.
This data can then be used to train models that follow complex system prompts.
Our framework significantly improves role and rule following capability in large language models.
arXiv Detail & Related papers (2024-09-10T06:07:32Z) - LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models [87.49676980090555]
Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities.
We introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs.
arXiv Detail & Related papers (2024-08-28T13:16:41Z) - Beyond Instruction Following: Evaluating Inferential Rule Following of Large Language Models [25.337295202341608]
Large Language Models (LLMs) are supposed to be controlled and guided by in real-world scenarios to be safe, accurate, and intelligent.
Previous studies that try to evaluate the inferential rule-following capability of LLMs fail to distinguish the inferential rule-following scenarios from the instruction-following scenarios.
This paper first clarifies the concept of inferential rule-following and proposes a comprehensive benchmark, RuleBench, to evaluate a diversified range of inferential rule-following abilities.
arXiv Detail & Related papers (2024-07-11T12:26:55Z) - View From Above: A Framework for Evaluating Distribution Shifts in Model Behavior [0.9043709769827437]
Large language models (LLMs) are asked to perform certain tasks.
How can we be sure that their learned representations align with reality?
We propose a domain-agnostic framework for systematically evaluating distribution shifts.
arXiv Detail & Related papers (2024-07-01T04:07:49Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Can Language Models Explain Their Own Classification Behavior? [1.8177391253202122]
Large language models (LLMs) perform well at a myriad of tasks, but explaining the processes behind this performance is a challenge.
This paper investigates whether LLMs can give faithful high-level explanations of their own internal processes.
We release our dataset, ArticulateRules, which can be used to test self-explanation for LLMs trained either in-context or by finetuning.
arXiv Detail & Related papers (2024-05-13T02:31:08Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
It has been shown that adversarial attacks on large language models (LLMs) can "jailbreak" the model into making harmful statements.
We argue that the spectrum of adversarial attacks on LLMs is much larger than merely jailbreaking.
arXiv Detail & Related papers (2024-02-21T18:59:13Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - Large Language Models can Learn Rules [106.40747309894236]
We present Hypotheses-to-Theories (HtT), a framework that learns a rule library for reasoning with large language models (LLMs)
Experiments on relational reasoning, numerical reasoning and concept learning problems show that HtT improves existing prompting methods.
The learned rules are also transferable to different models and to different forms of the same problem.
arXiv Detail & Related papers (2023-10-10T23:07:01Z) - Fundamental Limitations of Alignment in Large Language Models [16.393916864600193]
An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful.
This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones.
We propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models.
arXiv Detail & Related papers (2023-04-19T17:50:09Z) - RuleBert: Teaching Soft Rules to Pre-trained Language Models [21.69870624809201]
We introduce a classification task where, given facts and soft rules, the PLM should return a prediction with a probability for a given hypothesis.
We propose a revised loss function that enables the PLM to learn how to predict precise probabilities for the task.
Our evaluation results show that the resulting fine-tuned models achieve very high performance, even on logical rules that were unseen at training.
arXiv Detail & Related papers (2021-09-24T16:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.