View From Above: A Framework for Evaluating Distribution Shifts in Model Behavior
- URL: http://arxiv.org/abs/2407.00948v3
- Date: Sat, 28 Sep 2024 00:07:27 GMT
- Title: View From Above: A Framework for Evaluating Distribution Shifts in Model Behavior
- Authors: Tanush Chopra, Michael Li, Jacob Haimes,
- Abstract summary: Large language models (LLMs) are asked to perform certain tasks.
How can we be sure that their learned representations align with reality?
We propose a domain-agnostic framework for systematically evaluating distribution shifts.
- Score: 0.9043709769827437
- License:
- Abstract: When large language models (LLMs) are asked to perform certain tasks, how can we be sure that their learned representations align with reality? We propose a domain-agnostic framework for systematically evaluating distribution shifts in LLMs decision-making processes, where they are given control of mechanisms governed by pre-defined rules. While individual LLM actions may appear consistent with expected behavior, across a large number of trials, statistically significant distribution shifts can emerge. To test this, we construct a well-defined environment with known outcome logic: blackjack. In more than 1,000 trials, we uncover statistically significant evidence suggesting behavioral misalignment in the learned representations of LLM.
Related papers
- Fair In-Context Learning via Latent Concept Variables [17.216196320585922]
Large language models (LLMs) can inherit social bias and discrimination from their pre-training data.
We design data augmentation strategies that reduce correlation between predictive outcomes and sensitive variables helping to promote fairness during latent concept learning.
arXiv Detail & Related papers (2024-11-04T23:10:05Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
Current evaluations of large language models (LLMs) often overlook non-determinism.
greedy decoding generally outperforms sampling methods for most evaluated tasks.
Smaller LLMs can match or surpass larger models such as GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-15T06:12:17Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Do LLMs Play Dice? Exploring Probability Distribution Sampling in Large Language Models for Behavioral Simulation [73.58618024960968]
An increasing number of studies are employing large language models (LLMs) as agents to emulate the sequential decision-making processes of humans.
This arouses curiosity regarding the capacity of LLM agents to comprehend probability distributions.
Our analysis indicates that LLM agents can understand probabilities, but they struggle with probability sampling.
arXiv Detail & Related papers (2024-04-13T16:59:28Z) - Few-Shot Fairness: Unveiling LLM's Potential for Fairness-Aware
Classification [7.696798306913988]
We introduce a framework outlining fairness regulations aligned with various fairness definitions.
We explore the configuration for in-context learning and the procedure for selecting in-context demonstrations using RAG.
Experiments conducted with different LLMs indicate that GPT-4 delivers superior results in terms of both accuracy and fairness compared to other models.
arXiv Detail & Related papers (2024-02-28T17:29:27Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Intuitive or Dependent? Investigating LLMs' Behavior Style to
Conflicting Prompts [9.399159332152013]
This study investigates the behaviors of Large Language Models (LLMs) when faced with conflicting prompts versus their internal memory.
This will help to understand LLMs' decision mechanism and also benefit real-world applications, such as retrieval-augmented generation (RAG)
arXiv Detail & Related papers (2023-09-29T17:26:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.