Covariance-based method for eigenstate factorization and generalized singlets
- URL: http://arxiv.org/abs/2311.04426v2
- Date: Mon, 18 Nov 2024 21:04:08 GMT
- Title: Covariance-based method for eigenstate factorization and generalized singlets
- Authors: Federico Petrovich, R. Rossignoli, N. Canosa,
- Abstract summary: We derive a general method for determining the necessary and sufficient conditions for exact factorization $|Psirangle=otimes_p |psi_prangle$ of an eigenstate of a many-body Hamiltonian $H$.
The formalism is then used to derive exact dimerization and clusterization conditions in spin systems.
- Score: 0.0
- License:
- Abstract: We derive a general method for determining the necessary and sufficient conditions for exact factorization $|\Psi\rangle=\otimes_p |\psi_p\rangle$ of an eigenstate of a many-body Hamiltonian $H$, based on the quantum covariance matrix of the relevant local operators building the Hamiltonian. The "site" $p$ can be either a single component or a group of subsystems. The formalism is then used to derive exact dimerization and clusterization conditions in spin systems, covering from spin-$s$ singlets and clusters coupled to $0$ total spin to general nonmaximally entangled spin-$s$ dimers (generalized singlets). New results for field induced dimerization in anisotropic $XYZ$ arrays under a magnetic field are obtained.
Related papers
- Clustering Mixtures of Bounded Covariance Distributions Under Optimal
Separation [44.25945344950543]
We study the clustering problem for mixtures of bounded covariance distributions.
We give the first poly-time algorithm for this clustering task.
Our algorithm is robust to $Omega(alpha)$-fraction of adversarial outliers.
arXiv Detail & Related papers (2023-12-19T01:01:53Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Superfluid weight in the isolated band limit within the generalized random phase approximation [0.0]
The superfluid weight of a generic lattice model with attractive Hubbard interaction is computed analytically in the isolated band limit.
It is found that the relation obtained in [https://link.aps.org/doi103/PhysRevB.106.014518] between the superfluid weight in the flat band limit and the so-called minimal quantum metric is valid even at the level of the generalized random phase approximation.
arXiv Detail & Related papers (2023-08-21T15:11:32Z) - Sampled Transformer for Point Sets [80.66097006145999]
sparse transformer can reduce the computational complexity of the self-attention layers to $O(n)$, whilst still being a universal approximator of continuous sequence-to-sequence functions.
We propose an $O(n)$ complexity sampled transformer that can process point set elements directly without any additional inductive bias.
arXiv Detail & Related papers (2023-02-28T06:38:05Z) - Condition-number-independent Convergence Rate of Riemannian Hamiltonian
Monte Carlo with Numerical Integrators [22.49731518828916]
We show that for distributions in the form of $e-alphatopx$ on a polytope with $m constraints, the convergence rate of a family of commonly-used$$ is independent of $leftVert alpharightVert$ and the geometry of the polytope.
These guarantees are based on a general bound on the convergence rate for densities of the form $e-f(x)$ in terms of parameters of the manifold and the integrator.
arXiv Detail & Related papers (2022-10-13T17:46:51Z) - Average-fluctuation separation in energy levels in many-particle quantum
systems with $k$-body interactions using $q$-Hermite polynomials [0.0]
Separation between average and fluctuation in the state density in many-particle quantum systems is shown.
The smoothed state density is represented by the $q$-normal distribution ($f_qN$) which is the weight function for $q$-Hermites.
As the rank of interaction $k$ increases, the fluctuations set in with smaller order of corrections in the smooth state density.
arXiv Detail & Related papers (2021-11-23T17:45:57Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups [115.58550697886987]
We provide a completely general algorithm for solving for the equivariant layers of matrix groups.
In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before.
Our approach outperforms non-equivariant baselines, with applications to particle physics and dynamical systems.
arXiv Detail & Related papers (2021-04-19T17:21:54Z) - Universal separability criterion for arbitrary density matrices from
causal properties of separable and entangled quantum states [0.0]
General physical background of Peres-Horodecki positive partial transpose (ppt-) separability criterion is revealed.
C causal separability criterion has been proposed for arbitrary $ DN times DN$ density matrices acting in $ mathcalH_Dotimes N $ Hilbert spaces.
arXiv Detail & Related papers (2020-12-17T07:37:30Z) - Lorentz Invariant Quantum Concurrence for SU(2) x SU(2) spin-parity
states [0.0]
The concurrence of spin-parity states is shown to be invariant under $SO(1,3)$ Lorentz boosts and $O(3)$ rotations.
Such a covariant framework is used for computing the Lorentz invariant spin-parity entanglement of spinorial particles coupled to a magnetic field.
arXiv Detail & Related papers (2020-03-07T19:15:08Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.