論文の概要: Algorithms for Non-Negative Matrix Factorization on Noisy Data With Negative Values
- arxiv url: http://arxiv.org/abs/2311.04855v3
- Date: Thu, 18 Jul 2024 21:36:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 00:16:29.820008
- Title: Algorithms for Non-Negative Matrix Factorization on Noisy Data With Negative Values
- Title(参考訳): 負値を持つ雑音データに対する非負行列分解アルゴリズム
- Authors: Dylan Green, Stephen Bailey,
- Abstract要約: 非負行列分解(Non- negative matrix factorization, NMF)は, ノイズデータを解析するための次元還元法である。
本稿では、入力データのノイズと導入された負性の両方を扱えるShift-NMFとNearly-NMFの2つのアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-negative matrix factorization (NMF) is a dimensionality reduction technique that has shown promise for analyzing noisy data, especially astronomical data. For these datasets, the observed data may contain negative values due to noise even when the true underlying physical signal is strictly positive. Prior NMF work has not treated negative data in a statistically consistent manner, which becomes problematic for low signal-to-noise data with many negative values. In this paper we present two algorithms, Shift-NMF and Nearly-NMF, that can handle both the noisiness of the input data and also any introduced negativity. Both of these algorithms use the negative data space without clipping, and correctly recover non-negative signals without any introduced positive offset that occurs when clipping negative data. We demonstrate this numerically on both simple and more realistic examples, and prove that both algorithms have monotonically decreasing update rules.
- Abstract(参考訳): 非負行列因子化(Non- negative matrix factorization、NMF)は、ノイズデータ、特に天文学的なデータを分析することを約束する次元還元技術である。
これらのデータセットに対して、観測されたデータは、真の物理信号が厳密に正である場合でも、ノイズによる負の値を含むことができる。
NMFの以前の研究は、統計的に一貫した方法では陰性データを扱いておらず、多くの負の値を持つ低信号対雑音データでは問題となる。
本稿では、入力データのノイズと導入された負性の両方を扱えるShift-NMFとNearly-NMFの2つのアルゴリズムを提案する。
これらのアルゴリズムはどちらもクリッピングなしで負のデータ空間を使用し、クリッピング時に発生する正のオフセットを導入せずに非負の信号を正しく復元する。
単純な例とより現実的な例の両方でこれを数値的に示し、両方のアルゴリズムが単調に更新ルールを減らしていることを証明した。
関連論文リスト
- The Forward-Forward Algorithm: Some Preliminary Investigations [91.3755431537592]
フォワード・フォワードアルゴリズムは、フォワードパスとフォワードパスを2つのフォワードパスで置き換える。
正のパスと負のパスが時間内に分離できれば、負のパスはオフラインで行うことができる。
論文 参考訳(メタデータ) (2022-12-27T02:54:46Z) - Understanding Collapse in Non-Contrastive Learning [122.2499276246997]
モデルがデータセットサイズに対して小さすぎる場合,SimSiam表現が部分次元崩壊することを示す。
本稿では,この崩壊の度合いを計測し,微調整やラベルを使わずに下流のタスク性能を予測できる指標を提案する。
論文 参考訳(メタデータ) (2022-09-29T17:59:55Z) - Learning From Positive and Unlabeled Data Using Observer-GAN [0.0]
正・未ラベルデータ(A.K.A. PU学習)から学習することの問題は、二項分類(正・負)において研究されている。
GAN(Generative Adversarial Networks)は、教師あり学習が分類タスクにおいて最先端の精度を持つという利点を生かして、教師あり設定に問題を還元するために使用されている。
論文 参考訳(メタデータ) (2022-08-26T07:35:28Z) - Adaptive Weighted Nonnegative Matrix Factorization for Robust Feature
Representation [9.844796520630522]
非負行列分解(NMF)は、機械学習における次元の減少に広く用いられている。
従来のNMFは、ノイズに敏感であるように、アウトリーチを適切に扱わない。
本稿では,各データポイントの異なる重要性を強調するため,重み付き適応重み付きNMFを提案する。
論文 参考訳(メタデータ) (2022-06-07T05:27:08Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
非負の行列因子化(NMF)は、非負のデータを部品ベースの表現で表すことの有効性から、近年広く研究されている。
そこで本研究では,係数行列に対数ノルムを課した新しいNMF法を提案する。
提案手法のロバスト性を高めるために,$ell_2,log$-(pseudo) ノルムを新たに提案した。
論文 参考訳(メタデータ) (2022-04-22T11:38:10Z) - Classification from Positive and Biased Negative Data with Skewed
Labeled Posterior Probability [0.0]
正負負の分類問題 (PbN) にアプローチする新しい手法を提案する。
本手法は, 観測データの正の後方確率を表すスキュード信頼による負の影響を補正する手法を組み込んだものである。
論文 参考訳(メタデータ) (2022-03-11T04:31:35Z) - Initialization for Nonnegative Matrix Factorization: a Comprehensive
Review [0.0]
非負の因子化(NMF)は、非負のデータ行列から非負の基底を抽出することで有意なデータを表現するための一般的な方法となっている。
それぞれの手法の性能を示す数値的な結果を示す。
論文 参考訳(メタデータ) (2021-09-08T18:49:41Z) - Rethinking Negative Sampling for Unlabeled Entity Problem in Named
Entity Recognition [47.273602658066196]
ラベルのないエンティティは、名前付きエンティティ認識モデルのパフォーマンスを著しく劣化させる。
我々は、なぜ負のサンプリングが理論的にも経験的にも成功するのかを分析する。
負サンプリングのための重み付き適応サンプリング分布を提案する。
論文 参考訳(メタデータ) (2021-08-26T07:02:57Z) - A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels [49.990938653249415]
本研究では,初期疑似ラベルを雑音ラベルデータとして用いる非ラベルデータに割り当て,雑音ラベルデータを用いて深層ニューラルネットワークを訓練する手法を提案する。
実験の結果,提案手法は,いくつかのベンチマークデータセットにおいて,最先端の手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-03-08T11:46:02Z) - Reinforced Negative Sampling over Knowledge Graph for Recommendation [106.07209348727564]
我々は、高品質なネガティブを探索する強化学習エージェントとして機能する新しい負サンプリングモデル、知識グラフポリシーネットワーク(kgPolicy)を開発した。
kgPolicyは、ターゲットのポジティブなインタラクションからナビゲートし、知識を意識したネガティブなシグナルを適応的に受信し、最終的にはリコメンダをトレーニングする潜在的なネガティブなアイテムを生成する。
論文 参考訳(メタデータ) (2020-03-12T12:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。