論文の概要: Initialization for Nonnegative Matrix Factorization: a Comprehensive
Review
- arxiv url: http://arxiv.org/abs/2109.03874v1
- Date: Wed, 8 Sep 2021 18:49:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-10 14:02:26.309652
- Title: Initialization for Nonnegative Matrix Factorization: a Comprehensive
Review
- Title(参考訳): 非負行列因子化の初期化:包括的考察
- Authors: Sajad Fathi Hafshejani and Zahra Moaberfard
- Abstract要約: 非負の因子化(NMF)は、非負のデータ行列から非負の基底を抽出することで有意なデータを表現するための一般的な方法となっている。
それぞれの手法の性能を示す数値的な結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-negative matrix factorization (NMF) has become a popular method for
representing meaningful data by extracting a non-negative basis feature from an
observed non-negative data matrix. Some of the unique features of this method
in identifying hidden data put this method amongst the powerful methods in the
machine learning area. The NMF is a known non-convex optimization problem and
the initial point has a significant effect on finding an efficient local
solution. In this paper, we investigate the most popular initialization
procedures proposed for NMF so far. We describe each method and present some of
their advantages and disadvantages. Finally, some numerical results to
illustrate the performance of each algorithm are presented.
- Abstract(参考訳): 非負行列分解(nmf)は、観察された非負行列から非負基底特徴を抽出することで有意義なデータを表現する一般的な方法となっている。
隠れたデータの識別において、この方法のユニークな特徴は、機械学習分野における強力な方法の1つとなった。
NMF は非凸最適化問題として知られており、初期点は効率的な局所解を見つける上で大きな影響を与える。
本稿では,NMF に提案されている最も一般的な初期化手順について検討する。
それぞれの方法を説明し,その利点と欠点について述べる。
最後に,各アルゴリズムの性能を示す数値的な結果を示す。
関連論文リスト
- Contaminated Images Recovery by Implementing Non-negative Matrix
Factorisation [0.0]
我々は,従来のNMF,HCNMF,L2,1-NMFアルゴリズムのロバスト性を理論的に検討し,ORLおよび拡張YaleBデータセットのロバスト性を示す実験セットを実行する。
これらの手法の計算コストのため、HCNMFやL2,1-NMFモデルのような最終モデルは、この研究のパラメータに収束しない。
論文 参考訳(メタデータ) (2022-11-08T13:50:27Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
行列分解 (MF) を一定の制約で考慮し, 様々な分野の応用を見いだす。
我々は,効率の良いメッセージパッシング実装であるUAMPMFを用いて,MFに対するベイズ的アプローチを開発する。
UAMPMFは、回復精度、ロバスト性、計算複雑性の観点から、最先端のアルゴリズムを著しく上回ることを示す。
論文 参考訳(メタデータ) (2022-07-31T12:09:32Z) - Finding Rule-Interpretable Non-Negative Data Representation [2.817412580574242]
ルールベース記述と部分ベース表現の利点を融合したNMF方式を提案する。
提案手法は、集中型埋め込みや教師付きマルチラベルNMFの実行といったタスクにおいて、多くの利点を提供する。
論文 参考訳(メタデータ) (2022-06-03T10:20:46Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
非負の行列因子化(NMF)は、非負のデータを部品ベースの表現で表すことの有効性から、近年広く研究されている。
そこで本研究では,係数行列に対数ノルムを課した新しいNMF法を提案する。
提案手法のロバスト性を高めるために,$ell_2,log$-(pseudo) ノルムを新たに提案した。
論文 参考訳(メタデータ) (2022-04-22T11:38:10Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
非負行列ファクタリゼーションの逆学習版を検討する。
我々の定式化では、攻撃者は与えられたデータ行列に有界ノルムの任意の行列を追加する。
辞書と係数行列を最適化するために, 逆学習に触発された効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-04-10T13:13:17Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Nonnegative Matrix Factorization with Toeplitz Penalty [0.0]
NMF(Nonnegative Matrix Factorization)は、データマトリックスの線形、部分ベースの近似を生成する教師なし学習アルゴリズムである。
非データ依存の補助制約を利用した新しいNMFアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-07T13:49:23Z) - Algorithms for Nonnegative Matrix Factorization with the
Kullback-Leibler Divergence [20.671178429005973]
Kullback-Leibler (KL) の発散は、非負行列分解(NMF)の最も広く使われている目的関数の1つである。
目的関数の非増加を保証する3つの新しいアルゴリズムを提案する。
我々は、KL NMFアルゴリズムの性能に関する総合的な画像を提供するために、広範な数値実験を行う。
論文 参考訳(メタデータ) (2020-10-05T11:51:39Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
位相探索(PR)とアフィンランク最小化(ARM)アルゴリズムに基づいてPSDMFアルゴリズムを設計可能であることを示す。
このアイデアに触発され、反復的ハードしきい値(IHT)に基づくPSDMFアルゴリズムの新たなファミリーを導入する。
論文 参考訳(メタデータ) (2020-07-24T06:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。