論文の概要: Consensus-based construction of high-dimensional free energy surface
- arxiv url: http://arxiv.org/abs/2311.05009v1
- Date: Wed, 8 Nov 2023 20:32:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 16:58:04.942355
- Title: Consensus-based construction of high-dimensional free energy surface
- Title(参考訳): コンセンサスに基づく高次元自由エネルギー表面の構築
- Authors: Liyao Lyu, Huan Lei
- Abstract要約: 主な課題は、エネルギー障壁と次元の出現である。
既存のアプローチは、フルフェーズ空間の効率的な探索を確立するための洗練されたサンプリング手法に基づいていることが多い。
本稿では,関数表現とトレーニングセットを同時に最適化し,サンプリングに基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 7.297352404640493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One essential problem in quantifying the collective behaviors of molecular
systems lies in the accurate construction of free energy surfaces (FESs). The
main challenges arise from the prevalence of energy barriers and the high
dimensionality. Existing approaches are often based on sophisticated enhanced
sampling methods to establish efficient exploration of the full-phase space. On
the other hand, the collection of optimal sample points for the numerical
approximation of FESs remains largely under-explored, where the discretization
error could become dominant for systems with a large number of collective
variables (CVs). We propose a consensus sampling-based approach by
reformulating the construction as a minimax problem which simultaneously
optimizes the function representation and the training set. In particular, the
maximization step establishes a stochastic interacting particle system to
achieve the adaptive sampling of the max-residue regime by modulating the
exploitation of the Laplace approximation of the current loss function and the
exploration of the uncharted phase space; the minimization step updates the FES
approximation with the new training set. By iteratively solving the minimax
problem, the present method essentially achieves an adversarial learning of the
FESs with unified tasks for both phase space exploration and posterior
error-enhanced sampling. We demonstrate the method by constructing the FESs of
molecular systems with a number of CVs up to 30.
- Abstract(参考訳): 分子系の集合的挙動を定量化する重要な問題は、自由エネルギー表面(FES)の正確な構築にある。
主な課題は、エネルギー障壁の出現と高次元性から生じる。
既存のアプローチはしばしば、フルフェーズ空間の効率的な探索を確立するための洗練されたサンプリング手法に基づいている。
一方、FESの数値近似のための最適なサンプル点の収集は、多くの集合変数 (CV) を持つシステムでは、離散化誤差が支配的になりうるため、ほとんど未探索のままである。
関数表現とトレーニングセットを同時に最適化するミニマックス問題として構成を再構成し,コンセンサスサンプリングに基づくアプローチを提案する。
特に、最大化ステップは、現在損失関数のラプラス近似の活用と未チャート位相空間の探索を調節し、最大残留状態の適応サンプリングを達成する確率的相互作用粒子系を確立し、最小化ステップは新しいトレーニングセットでFES近似を更新する。
本手法は,ミニマックス問題を反復的に解くことにより,位相空間探索と後部誤差強調サンプリングの両面において,FESの対角学習を実現する。
本手法は,分子系のFESを最大30個までのCVで構築することで実証する。
関連論文リスト
- Learning diffusion at lightspeed [4.154846138501937]
観測データから拡散項を学習する既存のモデルは、複雑な二段階最適化問題に依存する。
既存のアーキテクチャの複雑さを回避できる新しいシンプルなモデル JKOnet* を提案する。
JKOnet*は単純な二次的損失を最小限に抑え、サンプル効率、計算複雑性、精度で他のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-06-18T13:44:07Z) - Enhanced sampling of robust molecular datasets with uncertainty-based
collective variables [0.0]
化学関連データポイントの取得を導くために,不確実性を集合変数(CV)として活用する手法を提案する。
このアプローチでは、1つのモデルからのガウス混合モデルに基づく不確実性測定を、偏りのある分子動力学シミュレーションのためのCVとして採用する。
論文 参考訳(メタデータ) (2024-02-06T06:42:51Z) - Energy-Guided Continuous Entropic Barycenter Estimation for General Costs [95.33926437521046]
任意のOTコスト関数に対して連続的エントロピーOT(EOT)バリセンタを近似する新しいアルゴリズムを提案する。
本手法は、弱いOTに基づくEOT問題の二重再構成に基づいている。
論文 参考訳(メタデータ) (2023-10-02T11:24:36Z) - Federated Compositional Deep AUC Maximization [58.25078060952361]
本研究では,曲線(AUC)のスコアを直接最適化することにより,不均衡なデータに対する新しいフェデレート学習法を開発した。
私たちの知る限りでは、このような好ましい理論的な結果を達成した最初の作品である。
論文 参考訳(メタデータ) (2023-04-20T05:49:41Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Distance-based Hyperspherical Classification for Multi-source Open-Set
Domain Adaptation [34.97934677830779]
クローズドワールドのシナリオで訓練されたビジョンシステムは、新しい環境条件が提示されると必然的に失敗する。
オープンワールド学習への道のりは、長年にわたる研究課題である。
本研究ではHyMOSを導入することで,マルチソースなOpen-Setドメイン適応を実現する。
論文 参考訳(メタデータ) (2021-07-05T14:56:57Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Achieving fast high-fidelity optimal control of many-body quantum
dynamics [0.0]
本稿では, 難解な多体問題に適用することで, 最近の高精度最適制御手法の有効性を実証する。
我々は, プロセスの最小期間推定値を用いて, 0.99-0.9999の範囲の忠実度を観測した。
全体として、この比較は理想的なオープンループ設定における多体システムに対しても重要な方法論的改善を示唆している。
論文 参考訳(メタデータ) (2020-08-13T18:30:24Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
自由エネルギー摂動 (FEP) は60年以上前にズワンツィヒによって自由エネルギー差を推定する方法として提案された。
FEPは、分布間の十分な重複の必要性という厳しい制限に悩まされている。
目標自由エネルギー摂動(Targeted Free Energy Perturbation)と呼ばれるこの問題を緩和するための1つの戦略は、オーバーラップを増やすために構成空間の高次元マッピングを使用する。
論文 参考訳(メタデータ) (2020-02-12T11:10:00Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。