論文の概要: Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients
- arxiv url: http://arxiv.org/abs/2311.05025v1
- Date: Wed, 8 Nov 2023 21:19:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 16:44:24.957748
- Title: Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients
- Title(参考訳): 不正確な勾配を持つ無バイアス運動性ランゲヴィンモンテカルロ
- Authors: Neil K. Chada, Benedict Leimkuhler, Daniel Paulin, Peter A. Whalley
- Abstract要約: 動力学的ランゲヴィンダイナミクスに基づく後進手段の非バイアス化手法を提案する。
提案した推定器は偏りがなく、有限分散となり、中心極限定理を満たす。
実験により, 有効試料当たりの勾配評価の数は, 不正確な勾配を用いた場合においても, 寸法に依存しないことが示唆された。
- 参考スコア(独自算出の注目度): 0.9558392439655016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an unbiased method for Bayesian posterior means based on kinetic
Langevin dynamics that combines advanced splitting methods with enhanced
gradient approximations. Our approach avoids Metropolis correction by coupling
Markov chains at different discretization levels in a multilevel Monte Carlo
approach. Theoretical analysis demonstrates that our proposed estimator is
unbiased, attains finite variance, and satisfies a central limit theorem. It
can achieve accuracy $\epsilon>0$ for estimating expectations of Lipschitz
functions in $d$ dimensions with $\mathcal{O}(d^{1/4}\epsilon^{-2})$ expected
gradient evaluations, without assuming warm start. We exhibit similar bounds
using both approximate and stochastic gradients, and our method's computational
cost is shown to scale logarithmically with the size of the dataset. The
proposed method is tested using a multinomial regression problem on the MNIST
dataset and a Poisson regression model for soccer scores. Experiments indicate
that the number of gradient evaluations per effective sample is independent of
dimension, even when using inexact gradients. For product distributions, we
give dimension-independent variance bounds. Our results demonstrate that the
unbiased algorithm we present can be much more efficient than the
``gold-standard" randomized Hamiltonian Monte Carlo.
- Abstract(参考訳): 本稿では,高度な分割法と高次勾配近似を併用した速度論的ランゲヴィンダイナミクスに基づくベイズ的後進手段の非バイアス手法を提案する。
マルチレベルモンテカルロ法ではマルコフ連鎖を異なる離散化レベルで結合することでメトロポリス補正を回避する。
理論解析により,提案する推定器は偏りがなく,有限分散に達し,中心極限定理を満たすことが示された。
ウォームスタートを想定せずに、$d$次元のリプシッツ関数の期待値を$\mathcal{o}(d^{1/4}\epsilon^{-2})$で推定する精度$\epsilon>0$を達成することができる。
近似的勾配と確率的勾配の両方を用いて類似した境界を示し、本手法の計算コストはデータセットのサイズと対数的にスケールすることを示した。
提案手法は,MNISTデータセット上の多項回帰問題と,サッカースコアに対するポアソン回帰モデルを用いて検証する。
実験の結果, 有効試料当たりの勾配評価の数は, 不正確な勾配を用いても次元に依存しないことがわかった。
積分布に対して、次元非依存な分散境界を与える。
その結果,我々が提示する偏りのないアルゴリズムは,'gold-standard' ランダム化ハミルトニアンモンテカルロよりもはるかに効率的であることが判明した。
関連論文リスト
- A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
そこで本研究では,2重に抽出可能な分布を推定するために,モンテカルロ・スタイン変分勾配勾配(MC-SVGD)法を提案する。
提案手法は,後続分布に匹敵する推論性能を提供しながら,既存のアルゴリズムよりもかなりの計算ゲインを達成する。
論文 参考訳(メタデータ) (2024-10-28T13:42:27Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
収束$tildeO(t-1/4)$とMoreautildeO(vareps-4)$がスムーズな非最適化のために最悪の場合の複雑性を示す。
適応的なステップサイズと最適収束度を持つ投影勾配法に基づく従属データに対する最初のオンライン非負行列分解アルゴリズムを得る。
論文 参考訳(メタデータ) (2022-03-29T17:59:10Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
この研究は、2-ワッサーシュタイン距離におけるサンプリング誤差の非同相解析のための一般的な枠組みを提供する。
我々の理論解析は数値実験によってさらに検証される。
論文 参考訳(メタデータ) (2021-09-08T18:00:05Z) - A New Framework for Variance-Reduced Hamiltonian Monte Carlo [88.84622104944503]
分散還元型ハミルトン・モンテカルロ法 (HMC) の新たなフレームワークを提案し,$L$-smooth および $m$-strongly log-concave 分布からサンプリングする。
本研究では,SAGA法やSVRG法をベースとした非バイアス勾配推定器を用いて,バッチサイズを小さくすることで,高い勾配効率が得られることを示す。
総合的および実世界のベンチマークデータによる実験結果から、我々の新しいフレームワークは、完全な勾配と勾配HMCアプローチを著しく上回っていることが示された。
論文 参考訳(メタデータ) (2021-02-09T02:44:24Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
勾配推定は統計学と学習理論において重要である。
ここでは古典的な回帰設定を考えると、実値の正方形可積分 r.v.$Y$ が予測される。
代替推定法で得られた値に対して, 漸近的境界が改良されることを証明した。
論文 参考訳(メタデータ) (2020-06-26T15:19:43Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
ディープニューラルネットワークにおける不確実性を定量化するための,新しい単一モデルに基づくアプローチを提案する。
平均場近似式を用いて解析的に難解な積分を計算する。
実験的に,提案手法は最先端の手法と比較して競合的に機能する。
論文 参考訳(メタデータ) (2020-06-13T07:32:38Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
The inequality and non-asymptotic properties of approximation procedure with Polyak-Ruppert averaging。
一定のステップサイズと無限大となる反復数を持つ平均的反復数に対する中心極限定理(CLT)を証明する。
論文 参考訳(メタデータ) (2020-04-09T17:54:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。